ebook img

Failure Mechanism and Stability Analysis of Rock Slope: New Insight and Methods PDF

263 Pages·2020·15.695 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Failure Mechanism and Stability Analysis of Rock Slope: New Insight and Methods

Ke Zhang Failure Mechanism and Stability Analysis of Rock Slope New Insight and Methods Failure Mechanism and Stability Analysis of Rock Slope Ke Zhang Failure Mechanism and Stability Analysis of Rock Slope New Insight and Methods 123 Ke Zhang Faculty of Electric Power Engineering KunmingUniversity ofScience andTechnology Kunming, Yunnan,China ISBN978-981-15-5742-2 ISBN978-981-15-5743-9 (eBook) https://doi.org/10.1007/978-981-15-5743-9 JointlypublishedwithSciencePress TheprinteditionisnotforsaleinChina(Mainland).CustomersfromChina(Mainland)pleaseorderthe printbookfrom:SciencePress. ©SciencePressandSpringerNatureSingaporePteLtd.2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublishers,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublishers,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publishers nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publishers remain neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface To cope with the rapid development of China, various slopes have been made in rock engineering projects. The stability analysis of rock slopes has been a critical and challenging problem being faced. However, these rock slopes usually contain various discontinuities of different sizes and shapes that play a dominant role in theirfailure.Thisbookfocusesonthepre-existinggeologicalstructuresintherock slopes. Based on the geological conditions encountered, rock slope failure modes areeitherdrivenbylarge-scale,globalfailuremechanismorstructurallycontrolled failure mechanism. Using new insights and methods, the failure mechanism and stability analysis methods of rock slopes are investigated based on a synthesis of laboratorytesting,theoreticalanalysis,numericalmodelsandpracticalapplications. This book is based on the research work by the author in the past 10 years, including11chaptersandthreeparts.Chapter1reviewsthecrackpropagationand coalescenceinrocks,andnumericalmethodsofrockslopestabilityanalysis.PartI (Chaps. 2−3) investigates the shear fracturing and fractal behavior of rock bridges in jointed rock slopes by conducting shear-box experiments, numerial simulations and fractal analysis. Part II (Chaps. 4−8) conducts a systematical study on the large-scale,globalfailuremechanismandstabilityanalysisbyusingthekinematical element method, integrated karst cave stochastic model-limit equilibrium method and improved strength reduction method. Part III (Chap. 9−11) conducts a sys- tematical study on the structurally-controlled failure mechanism and stability analysisbyusingthediscontinuitykinematicalelementmethod,improvedstrength reduction method and fracture mechanics method. This book was supported by the National Natural Science Foundation of China (Grant Nos. 11902128, 41762021), the Applied Basic Research Foundation of Yunnan Province, China (Grant Nos. 2019FI012, 2018FB093), the Young Elite ScientistSponsorshipProgrambyCSRME(GrantNo.2016QT-6-6),andtheChina Postdoctoral Science Foundation (Grant Nos. 2017T100715, 2016M592717). I would like to express our gratitude to my colleagues, engineering geologists, geotechnical engineers and mining engineers with whom I have worked all these years.Iammostgratefultomythreesupervisors,Prof.PingCao,Prof.GuoweiMa, and Prof. Heming Cheng, for all of their unswerving encouragement and support v vi Preface during my time at Central South University, University of Western Australia and Kunming UniversityofScience and Technology, respectively. I wouldalso like to thank them for being a great role model for me in pursuing a scientific career, a healthy lifestyle and a peaceful mind. Lastbutnotleast,Iwouldliketogivespecialthankstomyfamilymembers,in particularmywifeRuiBaoandmydaughterXinyinZhangforbringingmealotof joyfulness and happiness. Thanks for being with me. Kunming, Yunnan, China Ke Zhang March 2020 About This Book TocopewiththerapiddevelopmentofChina,rockslopestabilityhasbeenamajor problem faced during construction. This book presents in-depth knowledge of laboratory experiments, theories, modeling techniques, and practices for the anal- ysis and design of rock slopes under complicated geological environments. New conceptsinkinematicalelementmethod,discontinuitykinematicalelementmethod, integratedkarstcavestochasticmodel-limitequilibriummethod,improvedstrength reductionmethod,andfracturemechanicsmethodareaddressed,withconsideration of significant geological features. The book is intended to be a reference for geotechnical engineering and engi- neering geology professionals and a textbook for related graduate courses. vii Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Crack Propagation and Coalescence in Rocks. . . . . . . . . . . . . . 3 1.3 Numerical Methods of Rock Slope Stability Analysis . . . . . . . . 5 1.3.1 Limit Equilibrium Method . . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Numerical Techniques and Strength Reduction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.3 Fracture Mechanics Method . . . . . . . . . . . . . . . . . . . . 7 1.4 Main Contents in This Book . . . . . . . . . . . . . . . . . . . . . . . . . . 7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Part I Experimental Studies on Shear Failure Mechanism of Rock Masses 2 Influence of Flaw Inclination on Shear Fracturing and Fractal Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 Experimental Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.1 Specimen Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.2 Testing Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.3 Physical Implications of Shear-Box Test . . . . . . . . . . . 23 2.2 Patterns of Crack Propagation and Coalescence . . . . . . . . . . . . 23 2.2.1 Tensile Cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.2 Shear Cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.3 Coalescence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3 Peak Shear Strength of Flawed Specimens . . . . . . . . . . . . . . . . 32 2.3.1 Role of Shear-Normal Stress Ratio . . . . . . . . . . . . . . . 32 2.3.2 Role of Flaw Inclination. . . . . . . . . . . . . . . . . . . . . . . 33 ix x Contents 2.4 Fractal Characteristics of the Fragmentation . . . . . . . . . . . . . . . 34 2.4.1 Sieve Test Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.2 Calculation of Fractal Dimension . . . . . . . . . . . . . . . . 34 2.4.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 35 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 Influence of Flaw Density on Shear Fracturing and Fractal Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1 Experimental Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1.1 The 1991 Randa Rockslide and Conceptual Rock Bridge Model . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1.2 Specimen Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.3 Experimental Setup and Results . . . . . . . . . . . . . . . . . 45 3.2 Numerical Shear-Box Tests with the RFPA Model . . . . . . . . . . 47 3.3 Shear Fracturing Behavior of Rock Bridges . . . . . . . . . . . . . . . 50 3.3.1 Mechanical Behavior of Crack Initiation . . . . . . . . . . . 52 3.3.2 Mechanical Behavior of Crack Propagation and Coalescence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.3 Peak Shear Strength of Specimens. . . . . . . . . . . . . . . . 55 3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4 Fractal Characteristics of the Shear Fracture Surface. . . . . . . . . 59 3.4.1 Digital Image Processing . . . . . . . . . . . . . . . . . . . . . . 59 3.4.2 Box-Counting Fractal Dimension . . . . . . . . . . . . . . . . 60 3.4.3 Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . 60 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Part II Large-Scale, Global Failure Mechanism and Stability Analysis 4 Empirical Methods for Estimating Strength Parameters of Jointed Rock Masses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1 Methods Relating Strength with RQD . . . . . . . . . . . . . . . . . . . 70 4.2 Methods Relating Strength with Q. . . . . . . . . . . . . . . . . . . . . . 70 4.3 Methods Relating Strength with RMR . . . . . . . . . . . . . . . . . . . 71 4.4 Methods Relating Strength with Hoek-Brown Failure Criterion and GSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 Kinematical Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1 Kinematical Element Formulation Subjected to Seismic Loading and Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.1.1 Generation and Discretization of a Plastic Sliding Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Contents xi 5.1.2 Kinematics Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.1.3 Static Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.1.4 Factor of Safety Computation . . . . . . . . . . . . . . . . . . . 80 5.1.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2 Numerical Studies and Verification . . . . . . . . . . . . . . . . . . . . . 81 5.2.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2.4 Influence of Vertical and Inclined Inter-Element Boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3 Blasting Effect on Slope Stability and Example Analysis . . . . . 86 5.4 Seismic Stability Charts for Slopes . . . . . . . . . . . . . . . . . . . . . 88 5.4.1 Seismic Stability Charts for Preliminary Analysis. . . . . 90 5.4.2 Back Analysis Based on Seismic Stability Charts. . . . . 90 5.5 Rigorous Back Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.5.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . 97 5.5.2 Back Analysis Procedure . . . . . . . . . . . . . . . . . . . . . . 99 5.5.3 Example Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.6 Reliability Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.6.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . 105 5.6.2 Example Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6 Integrated Karst Cave Stochastic Model-Limit Equilibrium Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.1 Engineering Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.1.1 Study Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.1.2 Stratigraphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.1.3 Karst Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.2 AMonteCarloSimulationtoGenerateaKarstCaveStochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.2.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.2.2 A Stochastic Representation of the Length of a Karst Cave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.2.3 A Stochastic Representation for the Length of Carbonatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2.4 Karst Cave Stochastic Model Generator. . . . . . . . . . . . 122 6.3 Integrated Methodology for Stability Analysis . . . . . . . . . . . . . 124 6.3.1 Stability Analysis Procedure . . . . . . . . . . . . . . . . . . . . 124 6.3.2 Numerical Model of Open Pit Slope . . . . . . . . . . . . . . 125 6.3.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 129

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.