ebook img

Factor Analysis: An Applied Approach PDF

480 Pages·1993·7.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Factor Analysis: An Applied Approach

FACTOR ANALVSIS: AN APPLIED APPROACH This page intentionally left blank FACTOR ANALVSIS: AN APPLIED APPROACH Edward E. Cureton University of Tennessee Ralph B. D'Agostino Boston University V p Psychology Press A Taylor & Francis Croup NewYorkLondon FirstPublishedby Lawrence Erlbaum Associates, Inc., Publishers 365 Broadway Hillsdale, NewJersey 07642 TransferredtoDigitalPrinting2009byPsychologyPress 270MadisonAve,NewYorkNY10016 27ChurchRoad,Hove,EastSussex,BN32FA Copyright © 1983byLawrence Erlbaum Associates, Inc. Allrightsreserved. Nopartofthis book maybe reproduced in anyform, byphotostat, microform, retrieval system, oranyother means, withouttheprior writtenpermission ofthepublisher. LibraryofCongressCataloginginPublication Data Cureton, Edward Eugene, 1902 Factor analysis: anapplied approach. Bibliography: p. Includes indexes. I. Factor analysis. I. D'Agostino, Ralph B., joint author. II. Title. QA278.5.C87 519.5'354 80..20760 ISBN0-8058-1546-5 Publisher'sNote Thepublisherhasgonetogreatlengthstoensurethequalityofthis reprintbutpointsoutthatsomeimperfectionsintheoriginal maybeapparent. To the memory of Truman Lee Kelley This page intentionally left blank Contents Tables and Figures xv Preface xix 1 INTRODUCTION AND SPEARMAN APPROACH 1 1.1 Introduction 1 1.1.1 Interpretation of factors 3 1.1.2 Example 4 Problem 1.1.2:1 5 1.2 The Linear Mode' 6 Problem 1.2:1 7 1.3 The Principles of Parsimony 8 1.4 Spearman's Theory 8 1.5 Elementary Theorems 9 1.5.1 Factor pattern and correlation 9 1.5.2 Sample and population 11 1.5.3 Theorems on asingle correlation coefficient 12 Problem 1.5.3:1 12 1.5.4 Definition of triad 13 1.5.5 Theorems on triads 13 Problem 1.5.5:1 16 1.5.6 Tests ofsignificancefor triads 16 1.5.7 The tetrads 17 Problem 1.5.7:1 18 1.5.8 Negative triads; Heywood case 18 Problem 1.5.8:1 20 vii viii CONTENTS 1.5.9 limiting conditions 20 1.5.10 Theorem on group factors 20 Problem 1.5.10:1 22 1.6 Tetrad-Triad Analysis 22 1.6.1 Standard error of atetrad 23 Problem 1.6.1:1 25 1.6.2 Tetrad analysis 25 1.6.3 The factor pattern 26 1.6.4 Triad analysis 27 1.6.5 The residuals 27 1.6.6 Estimation of group-factor loadings 28 1.6.7 The numerical factor pattern 30 Problem 1.6.7:1 31 1.6.8 Interpretation 31 Exercise 1:1 31 2 CENTROIDMETHOD; ROTATION IN TWO DIMENSiONS...... 33 2.1 Introduction 33 2.1.1 The two-step procedure 33 2.1.2 The transformation 34 2.2 Elementary Theory of Initial Factoring 36 2.3 The Centroid Method 38 2.3.1 Centroid equations 38 2.3.2 Reflection 39 2.3.3 Residual matrices and later factors 40 2.3.4 Effects of reflection 41 2.4 Centroid Computations 42 2.4.1 Computational accuracy and checks 42 2.4.2 First-factor loadings 43 2.4.3 Residuals 43 2.4.4 Reflection 44 2.4.5 Factor matrix 46 Exercise 2:1 47 2.5 Rotation in Two Dimensions 47 2.5.1 Geometric model 48 2.5.2 Centroid vectors 51 2.5.3 The transformation equations and the rotated factor matrix 52 2.5.4 Alternative orthogonal rotation 55 2.5.5 Oblique rotation 56 2.5.6 Efficient computation 59 Exercise 2:2 61 2.6 Further Problems 61 2.6.1 Example 63 CONTENTS ix 3 ELEMENTSOF MATRIXALGEBRA.......................... 67 3.1 Introduction 67 3.2 Elementary Matrix Algebra 67 3.2.1 Preliminary definitions and rules ofaddition and subtraction 68 3.2.2 Transpose ofa matrix 69 Problem 3.2.2:1 69 3.2.3 Vectors 70 Problem 3.2.3:1 71 3.2.4 Matrix multiplication 71 3.2.5 Application to nonhomogeneous linear equations 76 3.2.6 Application to linear transformations 77 Problem 3.2.6:1 78 Problem 3.2.6:2 79 Problem 3.2.6:3 80 3.2.7 Symmetric matrices 81 Problem 3.2.7:1 82 3.2.8 Diagonal matrices 82 Problem 3.2.8:1 83 3.2.9 Scalar matrices and scalar multiplication 83 3.2.10 The identity matrix 84 3.3 The Inverse of a Square Matrix 84 3.3.1 Definition and properties of the inverse 85 3.3.2 Matrix inversion 88 3.4 Some Further Matrix Algebra 90 3.4.1 Orthogonal and orthonormal matrices 90 Problem 3.4.1:1 92 3.4.2 Rank of a matrix 93 Problem 3.4.2:1 96 3.4.3 Gramian matrices 97 Problem 3.4.3:1 97 Problem 3.4.3:2 98 3.5 Notes 98 3.5.1 Matrix multiplication is associative 98 3.5.2 Matrix multiplication is distributive over matrix addition and subtraction 99 4 LINEARCOMPUTATIONS................................... 101 4.1 Introduction 101 4.2 Elimination Procedure 102 4.2.1 Algebra of elimination 102 4.2.2 Numerical example 104 Problem 4.2.2:1 105

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.