Fabrication and characterization of nanoscale shape memory alloy objects Dissertation zur Erlangung des Grades Doktor-Ingenieur der Fakultät für Maschinenbau der Ruhr-Universität Bochum von Dennis König aus Bochum Bochum 2013 Dissertation eingereicht am: 17.10.2013 Tag der Verteidigung: 29.11.2013 Erster Referent: Prof. Dr.-Ing. Alfred Ludwig Zweiter Referent: Prof. Dr.-Ing. Gunther Eggeler “If you don't mind, I'd like to stop listening to you and start talking.” – Dr. Sheldon Cooper For my parents Contents 1 Introduction..............................................................................................................1 2 Fundamentals......................................................................................................... ..3 2.1 TiNi-based SMAs........................................................................................ ..3 2.1.1 The martensitic transformation in TiNi-based alloys.................................. ..3 2.1.2 The thermal hysteresis – Compatibility of martensite and austenite........... ..7 2.1.3 TiNi-based SMA bulk materials.................................................................. ..9 2.1.4 TiNi-based SMA thin films......................................................................... 16 2.2 Ti-Ni-Cu SMAs........................................................................................... 18 2.2.1 Ti-Ni-Cu SMA bulk materials1................................................................... 18 2.2.2 Ti-Ni-Cu SMA thin films............................................................................ 21 2.3 Constraints on the phase transformation in TiNi-based SMAs................... 23 2.3.1 TiO -surface layer and interfacial reaction layer......................................... 23 x 2.3.2 Grain size effects and energy barriers.......................................................... 25 2.3.3 Constraints imposed by the substrate and stresses in thin films.................. 28 2.4 The electrical resistance of bulk materials, thin films, and ultrathin films.. 31 2.5 Ionic liquids................................................................................................. 33 2.5.1 Nanoparticle synthesis by sputtering into ionic liquids............................... 34 3 Experimental methods........................................................................................... 37 3.1 Sputter deposition of Ti-Ni-Cu SMA thin films.......................................... 37 3.2 Integral composition analysis – Energy dispersive X-ray analysis............. 42 3.3 Depth-resolved composition analysis – X-ray photoelectron...................... 42 spectroscopy 3.4 Structural and stress analysis – X-ray diffraction and temperature-............ 46 dependent X-ray diffraction 3.5 Investigation of phase transformations – Temperature-dependent.............. 47 resistance measurements 3.6 Design and fabrication of a test platform for freestanding SMA thin......... 49 films 3.7 Nanostructuring of thin film objects and ion implantation into thin............50 films – Focused ion beam method 3.8 Direct structuring of nano-objects – E-Beam-Lithography......................... 52 3.9 Microstructural analysis – Scanning electron microscopy and.................... 54 transmission electron microscopy 3.10 Fabrication of elemental, binary and ternary nanoparticles by sputtering... 55 into ionic liquids 4 Results and Discussion.......................................................................................... ..58 4.1 Characterization of the as-deposited Ti Ni Cu SMA thin films...............58 51 38 11 4.2 Thickness-dependence of the transformation properties............................. ..68 4.2.1 Phase transformation temperatures and thermal hysteresis......................... ..69 4.2.2 Structural analysis........................................................................................ ..71 4.2.3 Stress and grain size related effects............................................................. ..77 4.2.4 Interplay between structure and phase transformation properties............... ..79 4.3 The influence of the surface oxide layer and the interfacial layer on.......... ..81 phase transformation properties 4.3.1 Investigation of the transforming matrix phase........................................... ..83 4.3.2 Investigation of surface oxide and interfacial layers................................... ..88 4.4 Test platform for freestanding SMA thin film objects...................................95 4.5 Influence of lateral constraints on the phase transformation....................... ..98 4.5.1 Dependence of phase transformation characteristics on structure width..... ..99 4.5.1.1 Ex-post structuring of substrate-attached and freestanding............. 106 structures by FIB method 4.5.1.2 Direct structuring by electron beam lithography.................. 110 4.5.1.3 Influence of ion implantation during the FIB....................... 115 structuring process 4.5.2 Dependence of phase transformation characteristics on structure length.... 118 4.6 Fabrication of elemental and alloy NPs using magnetron sputtering.......... 119 into an IL 4.6.1 Fabrication and characterization of elemental NPs..................................... 120 4.6.2 Fabrication and characterization of binary Cu-Au alloy NPs...................... 121 4.6.3 Fabrication and characterization of ternary Cu-Au-Pt and Ti-Ni-Cu NPs.. 133 5 Conclusion and Outlook........................................................................................ 144 6 References............................................................................................................... 148 Publications........................................................................................................................ 155 Acknowledgements............................................................................................................157 Curriculum Vitae............................................................................................................... 158 List of abbreviations and symbols a [nm] lattice parameter of the cubic austenite phase B2 a [nm] lattice parameter a of the orthorhombic martensite phase B19 A [°C] austenite finish temperature f A [°C] austenite start temperature s AES [-] Auger electron spectroscopy AFM [-] atomic force microscopy at. % [-] atomic percent b [nm] lattice parameter b of the orthorhombic martensite phase B19 B2 [-] cubic austenite phase B19 [-] orthorhombic martensite phase B19` [-] monoclinic martensite phase BCV [-] Bain corresponding variant c [nm] lattice parameter c of the orthorhombic martensite phase B19 d [nm] grain size determined from XRD measurements XRD DC [A] direct current DSC [-] differential scanning calorimetry DHM [-] digital holography microscopy E [GPa] Young´s modulus E [eV] binding energy b EBL [-] e-beam lithography EDX [-] energy-dispersive X-ray spectroscopy FIB [-] focused ion beam FWHM [-] full width at half maximum HAADF [-] high-angle annular dark field HRTEM [-] high-resolution transmission electron microscopy ICDD [-] ICSD [-] IL [-] ionic liquid MEMS [-] Micro-electro-mechanical system M [°C] monoclinic martensite finish temperature f M [°C] monoclinic martensite start temperature s ML [-] multilayer O [°C] orthorhombic martensite finish temperature f O [°C] orthorhombic martensite start temperature s PE [-] pseudoelasticity PVD [-] physical vapor deposition R [°C] R-phase finish temperature f R [°C] R-phase start temperature s R-phase [-] trigonal martensite phase RF [Hz] radio frequency RT [°C] room temperature R(T) [] temperature-dependent resistance SAD [-] selected area diffraction SEM [-] scanning electron microscope SIMS [-] secondary ion mass spectrometry SMA [-] shape memory alloy SME [-] shape memory effect STEM [-] scanning transmission electron microscope TEM [-] transmission electron microscope T [°C] temperature TG [-] thermogravimetry UHV [Pa] ultra-high vacuum
Description: