ebook img

Extraction of Cellulose-Based Polymers from Textile Waste PDF

187 Pages·2022·5.007 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Extraction of Cellulose-Based Polymers from Textile Waste

Extraction of Cellulose-Based Polymers from Textile Wastes Edited by Helena P. Felgueiras, Jorge Padrão and Joana C. Antunes Printed Edition of the Special Issue Published in Polymers www.mdpi.com/journal/polymers Extraction of Cellulose-Based Polymers from Textile Wastes Extraction of Cellulose-Based Polymers from Textile Wastes Editors Helena P. Felgueiras Jorge Padra˜o Joana C. Antunes MDPI‚Basel‚Beijing‚Wuhan‚Barcelona‚Belgrade‚Manchester‚Tokyo‚Cluj‚Tianjin Editors HelenaP.Felgueiras JorgePadra˜o JoanaC.Antunes CentreforTextileScienceand CentreforTextileScienceand CentreforTextileScienceand Technology Technology Technology UniversityofMinho UniversityofMinho UniversityofMinho Guimara˜es Guimara˜es Guimara˜es Portugal Portugal Portugal EditorialOffice MDPI St. Alban-Anlage66 4052Basel,Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Polymers (ISSN 2073-4360) (available at: www.mdpi.com/journal/polymers/special issues/Extr Cellul Based Polym). For citation purposes, cite each article independently as indicated on the article page online and as indicatedbelow: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, PageRange. ISBN978-3-0365-4734-3(Hbk) ISBN978-3-0365-4733-6(PDF) © 2022 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents HelenaP.Felgueiras,JorgePadra˜oandJoanaC.Antunes ExtractionofCellulose-BasedPolymersfromTextileWastes Reprintedfrom: Polymers2022,14,2063,doi:10.3390/polym14102063 . . . . . . . . . . . . . . . . 1 GeraldoCardosodeOliveiraNeto, MichelineMaiaTeixeira, GabrielLuisVictorinoSouza, ValquiriaDemarchiArns,HenrriccoNievesPujolTucciandMarleneAmorim AssessmentoftheEco-EfficiencyoftheCircularEconomyintheRecoveryofCellulosefromthe ShreddingofTextileWaste Reprintedfrom: Polymers2022,14,1317,doi:10.3390/polym14071317 . . . . . . . . . . . . . . . . 5 Halimatuddahliana Nasution, Esam Bashir Yahya, H. P. S. Abdul Khalil, Marwan AbdulhakimShaah,A.B.SurianiandAzmiMohamedetal. ExtractionandIsolationofCelluloseNanofibersfromCarpetWastesUsingSupercriticalCarbon DioxideApproach Reprintedfrom: Polymers2022,14,326,doi:10.3390/polym14020326 . . . . . . . . . . . . . . . . . 21 TorkiA.ZughaibiandRobertR.Steiner ForensicAnalysisofPolymericCarpetFibersUsingDirectAnalysisinRealTimeCoupledtoan AccuTOF™MassSpectrometer Reprintedfrom: Polymers2021,13,2687,doi:10.3390/polym13162687 . . . . . . . . . . . . . . . . 35 ShengjunWang,JiaqiGuo,YiboMa,AlanX.Wang,XianmingKongandQianYu FabricationandApplicationofSERS-ActiveCelluloseFibersRegeneratedfromWasteResource Reprintedfrom: Polymers2021,13,2142,doi:10.3390/polym13132142 . . . . . . . . . . . . . . . . 47 MahaMohammadAl-RajabiandYeitHaanTeow GreenSynthesisofThermo-ResponsiveHydrogelfromOilPalmEmptyFruitBunchesCellulose forSustainedDrugDelivery Reprintedfrom: Polymers2021,13,2153,doi:10.3390/polym13132153 . . . . . . . . . . . . . . . . 59 Samsul Rizal, Abdul Khalil H. P. S., Adeleke A. Oyekanmi, Olaiya N. Gideon, Che K. AbdullahandEsamB.Yahyaetal. Cotton Wastes Functionalized Biomaterials from Micro to Nano: A Cleaner Approach for a SustainableEnvironmentalApplication Reprintedfrom: Polymers2021,13,1006,doi:10.3390/polym13071006 . . . . . . . . . . . . . . . . 81 BinweiZheng,WeiweiZhang,LitaoGuan,JinGu,DengyunTuandChuanshuangHu Enhanced Water Resistance of Recycled Newspaper/High Density Polyethylene Composite LaminatesviaHydrophobicModificationofNewspaperLaminas Reprintedfrom: Polymers2021,13,421,doi:10.3390/polym13030421 . . . . . . . . . . . . . . . . . 117 SamsulRizal,FunmilayoG.Olaiya,N.I.Saharudin,C.K.Abdullah,OlaiyaN.G.andM.K. MohamadHaafizetal. Isolation of Textile Waste Cellulose Nanofibrillated Fibre Reinforced in Polylactic Acid-Chitin BiodegradableCompositeforGreenPackagingApplication Reprintedfrom: Polymers2021,13,325,doi:10.3390/polym13030325 . . . . . . . . . . . . . . . . . 129 NehaTavker,VirendraKumarYadav,KrishnaKumarYadav,MarinaMSCabral-Pinto,Javed AlamandArunKumarShuklaetal. RemovalofCadmiumandChromiumbyMixtureofSilverNanoparticlesandNano-Fibrillated CelluloseIsolatedfromWastePeelsofCitrusSinensis Reprintedfrom: Polymers2021,13,234,doi:10.3390/polym13020234 . . . . . . . . . . . . . . . . . 145 v Omid Yazdani Aghmashhadi, Lisandra Rocha-Meneses, Nemailla Bonturi, Kaja Orupo˜ld, GhasemAsadpourandEsmaeilRasoolyGarmaroodyetal. Effect of Ink and Pretreatment Conditions on Bioethanol and Biomethane Yields from Waste BanknotePaper Reprintedfrom: Polymers2021,13,239,doi:10.3390/polym13020239 . . . . . . . . . . . . . . . . . 159 vi polymers Editorial Extraction of Cellulose-Based Polymers from Textile Wastes HelenaP.Felgueiras* ,JorgePadrão andJoanaC.Antunes CentreforTextileScienceandTechnology(2C2T),UniversityofMinho,CampusdeAzurém, 4800-058Guimarães,Portugal;[email protected](J.P.);[email protected](J.C.A.) * Correspondence:[email protected] The extraction and exploration of cellulose-based polymers is an exciting area of research.Formanyyears,wood(especiallyfrombleachedkraftwoodpulp)wasconsidered themainsourceofcellulosiccompoundsbecauseofitsabundanceinnature[1,2]. However, inthepastdecade,researchershavebeendevotedtofindingalternativestoextractcellulose from byproducts of agricultural crops and/or textile wastes, both highly available at a veryreducedrawmaterialcost. Indeed,becauseoftheever-increasingconsumptionof cotton-based products, the amount of cotton waste generated, including pre-consumer (fiberlinters,yarnslivers,fabricscrapsfromfactoryoffcuts,unsoldbrand-newgarments) and post-consumer (used and unwanted garments) wastes, has increased substantially inlandfills[2,3]. Infinishedcottonfabrics,cellulosecontentcanbeupto99%sincenon- cellulosecomponentsareeliminatedduringscouringandbleaching, whichareroutine preparation procedures. Considering the urgent demands for a circular economy and sustainableactions,researchershavebeentakingthefirststepstowardsfindingnewand greenerextractionsystemsforagriculturalandtextilewastestoendowtherawmaterials presentwithinthosewasteswithasecondlife.ThisSpecialIssuebringstogether10original articlesthatdetailtherecentprogressandnewdevelopmentsinthisfield. Rizaletal.,inaverycompellingandcriticaloverviewoftheworlds’currentsituation regardingcottonwastefibersandtheirineffectiveprocessingmechanismtomitigatetheir environmentalimpact,providedevidenceofnewworkbeingconductedtoemploythese wastesinfunctionalproducts. Indeed,differentpre-treatmenttechniqueswereidentified Citation:Felgueiras,H.P.; fortheirefficiencyinextractingcellulosenanocrystalsfromcottonwastes,andmanyappli- Padrão,J.;Antunes,J.C.Extractionof Cellulose-BasedPolymersfromTextile cationsinthepackagingandbiomedicalfieldswerehighlighted[3]. Netoetal. explored Wastes.Polymers2022,14,2063. andassessedtheeconomicandenvironmentalgainsfromthemechanicalshreddingof https://doi.org/10.3390/polym14102063 celluloseincottonfabricsinatextilecompany,identifyingthecircularityassociatedwith theadoptionofsuchmethods.Datasuggestedtheexistenceofopportunitiesforthecircular Received:30April2022 economybyresortingtomechanicalrecycling,eventhoughtherearestillsomelimitations Accepted:16May2022 relatedtotheconsumptionofelectricalenergyandamountoflubricantsemployed[4]. Published:18May2022 Nano-fibrillatedcelluloseextractedfromwastepeelsofcitrussinensisbyachemical Publisher’sNote:MDPIstaysneutral methodinvolvingalkaliandacidhydrolysisandmodifiedwithsilvernanoparticlesalso withregardtojurisdictionalclaimsin synthesizedusingextractofcitrussinensisskinsasareducingagentwereengineeredfor publishedmapsandinstitutionalaffil- heavymetalsorption. Datafoundtheseisolatesandnanoparticlesespeciallyeffectivein iations. removing cadmium and chromium particles from pharmaceutical effluent samples [5]. Rizaletal.,demonstratedthatcellulosenanofibrillatedfibersisolatedfromwastecotton fabricsandcombinedwithsupercriticalcarbondioxideviahigh-pressurehomogenization couldbeusedtoenhancepolylacticacid/chitinproperties,particularlythoserelatedwith Copyright: © 2022 by the authors. thethermal-mechanicalandwettabilityofthesystem[6]. Cellulosenanofibershavealso Licensee MDPI, Basel, Switzerland. beenisolatedfrombleachedcarpetwastesusinganinnovativesupercriticalcarbondioxide This article is an open access article treatmentapproach, whichwhileisolatingthematerialsalsoremovedimpurities. This distributed under the terms and treatmentwasunveiledasagreenapproachforenhancingtheisolationyieldofcellulose conditionsoftheCreativeCommons Attribution(CCBY)license(https:// nanofibersfromtextilewastes withimproved valueandhigh quality[7]. Additionally, creativecommons.org/licenses/by/ focusingoncarpetfibers, Zughaibietal., divulgedtheaccuracyofanewanalysistech- 4.0/). nique,theDirectAnalysisinRealTime(DART™)coupledtoanAccuratetime-of-flight 1 Polymers2022,14,2063 (AccuTOF™)massspectrometer,foridentifyingdistinctpolymericfibersincrimescenes, andhighlighteditspotentialforforensicsciences[8]. Wangetal.,engineeredaflexibleSERSsubstratebasedonregeneratedcellulosefibers, obtainedfromwastepaper,modifiedwithgoldnanoparticlesthroughdry-jetwetspinning method,anapproachturnedeco-friendlybyusingionicliquids. Thegoldnanoparticles wereincorporatedontheregeneratedfibersthroughelectrostaticinteraction. TheSERS scaffolding system was found very effective for identifying toxins and chemicals like dimetridazoleinaqueoussolutions[9]. Recyclednewspaperfibershavealsobeencollected and reinforced with high density polyethylene for potential outdoor applications. The compositesampleswereseentoimprovewaterresistanceandreducelossoftensilestrength inwetconditions,dependingontheamountofstearicacidusedtomodifythenewspaper fibers[10]. Additionally,Aghmashhadietal.,usingwastebanknotepaperasrawmatter, proposedtheproductionofvalue-addedproductslikebioethanolandbiogas. Inthisstudy, theauthorsanalyzedtheinfluenceofthepresenceandabsenceofinkonthefibersinthe bioethanolandbiogasyields. Theydeterminedthatwastebanknotepaperwithoutink andtreatedwithsulfuricacidandanitrogenexplosivedecompressionprocesscouldbea suitablefeedstockforsustainablebiorefineryapproaches[11]. Inthefieldofdrugdelivery,Al-Rajabietal.,exploredagreensynthesismethodfor developingathermo-responsivecellulosehydrogelusingcelluloseextractedfromoilpalm emptyfruitbunches. Thethermo-responsivenesswasguaranteedbytheincorporation ofPluronicF127polymerontothehydrogels. Asustainedreleaseofsilversulfadiazine wasobservedovertime. Intheend,itwasseenthatthethermo-responsivecellulose-based hydrogel could give rise to cost-effective and sustainable drug delivery systems using abundantlyavailableagriculturalbiomass[12]. Author Contributions: Conceptualization, H.P.F.; writing—review and editing, H.P.F., J.P. and J.C.A.; fundingacquisition, H.P.F.Allauthorshavereadandagreedtothepublishedversionof themanuscript. Funding:ThisresearchwasfundedbythePortugueseFoundationforScienceandTechnology(FCT) grantsPTDC/CTMTEX/28074/2017,PTDC/CTMTEX/28295/2017andUID/CTM/00264/2021. ConflictsofInterest:Theauthorsdeclarenoconflictofinterest. References 1. Tavares,T.D.;Antunes,J.C.;Ferreira,F.;Felgueiras,H.P.BiofunctionalizationofNaturalFiber-ReinforcedBiocompositesfor BiomedicalApplications.Biomolecules2020,10,148.[CrossRef][PubMed] 2. Teixeira, M.A.; Paiva, M.C.; Amorim, M.T.P.; Felgueiras, H.P. Electrospun Nanocomposites Containing Cellulose and Its DerivativesModifiedwithSpecializedBiomoleculesforanEnhancedWoundHealing.Nanomaterials2020,10,557.[CrossRef] [PubMed] 3. Rizal,S.;AbdulKhalil,H.P.S.;Oyekanmi,A.A.;Gideon,O.N.;Abdullah,C.K.;Yahya,E.B.;Alfatah,T.;Sabaruddin,F.A.;Rahman,A.A. CottonWastesFunctionalizedBiomaterialsfromMicrotoNano:ACleanerApproachforaSustainableEnvironmentalApplication. Polymers2021,13,1006.[CrossRef][PubMed] 4. deOliveiraNeto,G.C.;Teixeira,M.M.;Souza,G.L.V.;Arns,V.D.;Tucci,H.N.P.;Amorim,M.AssessmentoftheEco-Efficiency oftheCircularEconomyintheRecoveryofCellulosefromtheShreddingofTextileWaste.Polymers2022,14,1317.[CrossRef] [PubMed] 5. Tavker,N.;Yadav,V.K.;Yadav,K.K.;Cabral-Pinto,M.M.;Alam,J.;Shukla,A.K.;Ali,F.A.A.;Alhoshan,M.RemovalofCadmium andChromiumbyMixtureofSilverNanoparticlesandNano-FibrillatedCelluloseIsolatedfromWastePeelsofCitrusSinensis. Polymers2021,13,234.[CrossRef][PubMed] 6. Rizal,S.;Olaiya,F.G.;Saharudin,N.I.;Abdullah,C.K.;Olayia,N.G.;MohamadHaafiz,M.K.;Yahya,E.B.;Sabaruddin,F.A.; Ikramullah;AbdulKhalil,H.P.S.IsolationofTextileWasteCelluloseNanofibrillatedFibreReinforcedinPolylacticAcid-Chitin BiodegradableCompositeforGreenPackagingApplication.Polymers2021,13,325.[CrossRef][PubMed] 7. Nasution,H.;Yahya,E.B.;AbdulKhalil,H.P.S.;Shaah,M.A.;Suriani,A.B.;Mohamed,A.;Alfatah,T.;Abdullah,C.K.Extraction andIsolationofCelluloseNanofibersfromCarpetWastesUsingSupercriticalCarbonDioxideApproach.Polymers2022,14,326. [CrossRef][PubMed] 8. Zughaibi,T.A.;Steiner,R.R.ForensicAnalysisofPolymericCarpetFibersUsingDirectAnalysisinRealTimeCoupledtoan AccuTOF™MassSpectrometer.Polymers2021,13,2687.[CrossRef][PubMed] 2 Polymers2022,14,2063 9. Wang,S.;Guo,J.;Ma,Y.;Wang,A.X.;Kong,X.;Yu,Q.FabricationandApplicationofSERS-ActiveCelluloseFibersRegenerated fromWasteResource.Polymers2021,13,2142.[CrossRef][PubMed] 10. Zheng, B.; Zhang, W.; Guan, L.; Gu, J.; Tu, D.; Hu, C. Enhanced Water Resistance of Recycled Newspaper/High Density PolyethyleneCompositeLaminatesviaHydrophobicModificationofNewspaperLaminas.Polymers2021,13,421.[CrossRef] [PubMed] 11. Aghmashhadi,O.Y.;Rocha-Meneses,L.;Bonturi,N.;Orupõld,K.;Asadpour,G.;Garmaroody,E.R.;Zabihzadeh,M.;Kikas,T. EffectofInkandPretreatmentConditionsonBioethanolandBiomethaneYieldsfromWasteBanknotePaper. Polymers2021, 13,239.[CrossRef][PubMed] 12. Al-Rajabi,M.M.;Teow,Y.H.GreenSynthesisofThermo-ResponsiveHydrogelfromOilPalmEmptyFruitBunchesCellulosefor SustainedDrugDelivery.Polymers2021,13,2153.[CrossRef][PubMed] 3

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.