ebook img

eXtended Finite Element Method (XFEM) in Abaqus - Simulia PDF

61 Pages·2011·3.06 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview eXtended Finite Element Method (XFEM) in Abaqus - Simulia

eeXXtteennddeedd FFiinniittee EElleemmeenntt MMeetthhoodd ((XXFFEEMM)) iinn AAbbaaqquuss Zhen-zhongg Du s | e m è st y S ult a s s a DD © m | o c s. d 3 w. w w | OOvveerrvviieeww • Introduction • BBaassiicc XXFFEEMM CCoonncceeppttss • Modeling Approaches • Stationary cracks • Contour integgral calculation s | • Propagation cracks e m è yst • Cohesive segments approach S ult a • Linear elastic fracture mechanics approach s s a DD © • XFEM simultaneously used with other Fracture and Failure Techniques m | o s.c • Bulk material failure and interfacial delamination d 3 w. ww • Analysis Procedures | • Static • Implicit dynamic • Low cycle fatigue • XFEM used with other Analysis Techniques • Global/local modeling approach • Co-Simulation • EElleemmeennttss, OOuuttppuuttss aanndd ootthheerrss • Demonstration IInnttrroodduuccttiioonn s | e m è st y S ult a s s a DD © m | o c s. d 3 w. w w | IInnttrroodduuccttiioonn • Strong technology exists in Abaqus: • IInntteerrffaacciiaall ccrraacckkss wwiitthh VVCCCCTT aanndd ccoohheessiivvee eelleemmeenntt tteecchhnniiqquueess • Smeared crack approach to continuum damage initiation and evolution in the bulk materials • Some difficulties exist: s | e m è yst • Modeling and analysis of stationary 3-D curved surface cracks S ult a s s a •• PPrrooggrreessssiivvee ccrraacckk ggrroowwtthh ssiimmuullaattiioonnss ffoorr aarrbbiittrraarryy 33-DD ccrraacckkss DD © m | o c • eXtended Finite Element Method (XFEM) becomes s. d 3 w. w w rreellaattiivveellyy mmaattuurree ttoo bbee ccoommmmeerrcciiaalliizzeedd ssiinnccee iitt wwaass | 1st introduced by Belyschko and Black in 1999. IInnttrroodduuccttiioonn • Makes modeling of cracks easier and accurate • Allows crack to be modeled independent of the mesh • Allows simulation of initiation and propagation of a ddiissccrreettee ccrraacckk aalloonngg aann aarrbbiittrraarryy,, ssoolluuttiioonn-ddeeppeennddeenntt s | path without the requirement of remeshing e m è st y ult S • Supports contour integral evaluation for a stationary a s as ccrraacckk DD © m | o c s. d 3 w. w w | BBaassiicc XXFFEEMM CCoonncceeppttss s | e m è st y S ult a s s a DD © m | o c s. d 3 w. w w | BBaassiicc XXFFEEMM CCoonncceeppttss • is an extension of the conventional finite element method based on the concept of partition of unity; • allows the presence of discontinuities in an element by enriching degrees of freedom with special displacement functions Nodal displacement vectors Nodal enriched degree of DDiissppllaacceemmeenntt vveeccttoorr ffrreeeeddoomm vveeccttoorr JJump ffunctiion s | e m è st y S ult a s s a DD © m | o c s. d 3 w. w w | Asymptotic crack-tip functions Shape functions Nodal enriched degree of ffrreeeeddoomm vveeccttoorr BBaassiicc XXFFEEMM CCoonncceeppttss Applies to nodes whose Applies to all nodes in shape function support is tthhee mmooddeell ccuutt bbyy tthhee ccrraacckk ttiipp s | e m è st y S ult a s s a DD © m | o c s. d 3 ww. Applies to nodes whose w | sshhaappee ffuunnccttiioonn ssuuppppoorrtt iiss cut by the crack interior BBaassiicc XXFFEEMM CCoonncceeppttss Level set method • Is a numerical technique for describing a crack and tracking the motion ooff tthhee ccrraacckk • Couples naturally with XFEM and makes possible the modeling of 3D arbitrary crack growth without remeshing s | • Requires two level sets for a crack: e m è st y S ult • The first describes the crack a s s a DD © surface, Φ (phi) m | o c ds. • The second, Ψ (psi), is constructed 3 w. w w | ssoo tthhaatt tthhee iinntteerrsseeccttiioonn ooff ttwoo level sets gives the crack front • UUsseess ssiiggnneedd ddiissttaannccee ffuunnccttiioonnss ttoo ddeessccrriibbee tthhee ccrraacckk ggeeoommeettrryy • No explicit representation of the crack is needed and the crack is entirely described by nodal data BBaassiicc XXFFEEMM CCoonncceeppttss • Calculating Φ and Ψ •• TThhee nnooddaall vvaalluuee ooff tthhee ffuunnccttiioonn ΦΦ iiss tthhee ssiiggnneedd ddiissttaannccee ooff tthhee nnooddee ffrroomm the crack face • Positive value on one side of the crack face, negative on the other s | • The nodal value of the function Ψ is the signed distance of the node from e m è yst an almost-orthogonal surface passing through the crack front S ult a s s a •• TThhee ffuunnccttiioonn ΨΨ hhaass zzeerroo vvaalluuee oonn tthhiiss ssuurrffaaccee aanndd iiss nneeggaattiivvee oonn tthhee DD © m | side towards the crack o s.c Φ = 0 Ψ = 0 d 3 w. w w | NNodde ΦΦ ΨΨ 1 +0.25 −1.5 1 2 22 +00.2255 −11.00 00.55 3 4 3 −0.25 −1.5 44 −00.2255 −11.00 1.5

Description:
eXtended Finite Element Method (XFEM) in Abaqus. Zhen-zhong Strong technology exists in Abaqus: • Interfacial .. Example of using UDMGINI. • Objective.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.