ebook img

Exploring wind-driving dust species in cool luminous giants III. Wind models for M-type AGB stars: dynamic and photometric properties PDF

1.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exploring wind-driving dust species in cool luminous giants III. Wind models for M-type AGB stars: dynamic and photometric properties

Astronomy&Astrophysicsmanuscriptno.Exploring˙wind-driving˙dust˙species˙in˙cool˙luminous˙giants˙III ©ESO2015 February3,2015 Exploring wind-driving dust species in cool luminous giants III. Wind models for M-type AGB stars: dynamic and photometric properties S.Bladh1,S.Ho¨fner1,B.Aringer2,andK.Eriksson1 1 Department of Physics and Astronomy, Division of Astronomy and Space Physics, Uppsala University, Box 516, SE-75120, Uppsala,Sweden e-mail:[email protected] 2 UniversityofVienna,DepartmentofAstrophysics,Tu¨rkenschanzstraße17,A-1180Wien,Austria ReceivedSeptember4,2014;acceptedXXXX,2014 5 1 ABSTRACT 0 2 Context.Stellarwindsobservedinasymptoticgiantbranch(AGB)starsareusuallyattributedtoacombinationofstellarpulsations andradiationpressureondust.Shockwavestriggeredbypulsationspropagatethroughtheatmosphere,compressingthegasandlifting n ittocoolerregionswhichcreatesfavourableconditionsforgraingrowth.Ifsufficientradiativeaccelerationisexertedonthenewly a formedgrainsthroughabsorptionorscatteringofstellarphotons,anoutflowcanbetriggered.Strongcandidatesforwind-drivingdust J speciesinM-typeAGBstarsaremagnesiumsilicates(Mg2SiO4andMgSiO3).Suchgrainscanformclosetothestellarsurface,they 0 consistofabundantmaterialsand,iftheygrowtosizescomparabletothewavelengthofthestellarfluxmaximum,theyexperience 3 strongaccelerationbyphotonscattering. Aims.ThepurposeofthisstudyistoinvestigateifphotonscatteringonMg2SiO4 grainscanproducerealisticoutflowsforawide ] rangeofstellarparametersinM-typeAGBstars. R Methods.Weuseafrequency-dependentradiation-hydrodynamicscodewithadetaileddescriptionforthegrowthofMg SiO grains 2 4 S tocalculatethefirstextensivesetoftime-dependentwindmodelsforM-typeAGBstars.Thissetincludes139solar-massmodels, . withthreedifferentluminosities(5000L ,7000L ,and10000L )andeffectivetemperaturesrangingfrom2600Kto3200K.The h (cid:12) (cid:12) (cid:12) resultingwindproperties,visualandnear-IRphotometryandmid-IRspectraarecomparedwithobservations. p Results. We show that the models can produce outflows for a wide range of stellar parameters. We also demonstrate that they - o reproduceobservedmass-lossratesandwindvelocities,aswellasvisualandnear-IRphotometry.However,thecurrentmodelsdo r not show the characteristic silicate features at 10 and 18 µm as a result of the cool temperature of Mg SiO grains in the wind. 2 4 st IncludingasmallamountofFeinthegrainsfurtheroutinthecircumstellarenvelopewillincreasethegraintemperatureandresultin a pronouncedsilicatefeatures,withoutsignificantlyaffectingthephotometryinthevisualandnear-IRwavelengthregions. [ Conclusions.OutflowsdrivenbyphotonscatteringonMg SiO grainsareaviablewindscenarioforM-typeAGBstars,giventhe 2 4 successofthecurrentmodelsinreproducingobservedmass-lossrates,windvelocities,andphotometry.Bothsyntheticandobserved 1 photometrysuggestthatthedustyenvelopesofM-typeAGBstarsarequitetransparentatvisualandnear-IRwavelengths,otherwise v thevariationsinvisualfluxwouldnotbedominatedbymolecularfeatures. 2 3 Keywords. Stars:late-type Stars:AGBandpost-AGB Stars:atmospheres Stars:mass-loss Stars:winds,outflows,circumstellar 0 matter,dust 0 0 . 2 1. Introduction infraredwavelengthregionswhicharecrucialfortheenergyand 0 momentum budget of the atmosphere since the radiative flux 5 Itisgenerallyassumedthattheslowbutmassiveoutflowsofgas maximumofthestarisatabout1−2µm. 1 anddustfromcoolluminousAGBstarsareacceleratedbyradi- : This paper is the third in a series dedicated to identifying v ation pressure on dust grains. The total momentum of the pho- wind-drivingdustspeciesinM-typeAGBstarsbyusingacom- Xi tonsemittedbythesestarseasilymatches,orevenexceeds,the bination of different dynamical models and observational data. typicalmomentumofthestellarwinds,andsolidparticleswith In the first paper (Bladh & Ho¨fner, 2012) we focused on dy- r the right optical properties can be very efficient in gaining mo- a namical constraints for material properties, using a simple pa- mentumfromstellarphotonsthroughabsorptionandscattering rameterised description of the dust component in frequency- processes. dependentradiation-hydrodynamicalmodelsforpulsatingatmo- Observationally, grain materials are usually identified spheresandwinds.Sincedusttemperaturesarestronglyaffected through their characteristic lattice modes in the mid-IR, e.g. by the wavelength-dependence of the grain opacities (causing the well-known silicate features at about 10 and 18µm which greenhouse or inversegreenhouse effects), we foundthatmany are due to stretching and bending modes in the SiO tetrahe- dustspeciescannotcondensesufficientlyclosetothestartotrig- 4 dron. Mid-IR spectra of AGB stars give valuable insights into geroraccelerateawind.Inparticular,Fe-bearingsilicatessuffer the complex dust chemistry in the circumstellar envelopes (see fromaseveregreenhouseeffectasaresultofthesteepslopeof e.g.Dorschner,2010;Molsteretal.,2010,foranoverview).For the absorption coefficient at near-IR wavelengths, moving their determining which grains may contribute to wind acceleration, condensation zone much further away from the star than for however, important constraints come from the visual and near- Fe-free magnesium silicates, which was also demonstrated by 1 S.Bladhetal.:Exploringwind-drivingdustspeciesincoolluminousgiantsIII. Woitke(2006).Thiseffect,bydefinition,doesnotappearinwind nanometrerange,followedthemuchslowergrowthofthegrains modelswithgreyradiativetransfer,leadingtoasevereunderes- through condensation of material from the gas phase, on time timationofthecondensationdistanceforFe-bearingsilicates. scalescomparabletoatmosphereandwinddynamics.Currently In the second paper (Bladh et al., 2013) we presented syn- there is no well-established nucleation theory for oxygen-rich theticspectraandvisualandnear-IRphotometryresultingfrom atmospheres, describing the formation of the seed particles. theseparameterisedmodels(setP)andfrommoredetailedwind Fundamentalquestions,e.g.theircomposition(whichmaydiffer modelsdrivenbyphotonscatteringonMg SiO grains(setD), fromthebulkofmaterialbuildingupthegrains)arestillamat- 2 4 firstpresentedinHo¨fner(2008b).Comparingthesyntheticpho- ter of debate. Our modelling of dust formation follows Gail & tometry with observations of M-type AGB stars we found that Sedlmayr (1999), assuming that the growth rate of Mg SiO is 2 4 the latter models (set D) give a good agreement. In particular, determinedbytheadditionofSiOmoleculestothegrainsurface, they can reproduce large variations of the (V − K) colour dur- andusingaparametern /n thatsetsthenumberofseedparti- gr H ingthepulsationcycleduetoabundancevariationsofTiO.This clesperhydrogenatom1.Theseseedparticleswillstarttogrow isastrongindicationthatthecircumstellarenvelopesofM-type when the thermodynamic conditions are favourable. The equa- AGB stars, and, consequently, the wind-driving dust grains are tion describing the time-dependent growth of Mg SiO grains 2 4 rathertransparent,excludingtrueabsorptionbydustasthemain is discussed in Bladh et al. (2013). Since we assume that the source of momentum. Results from the parameterised models formation of seed particles precedes grain growth (i.e. no new (set P) support this conclusion, which makes photon scattering seed nuclei are formed) grain size will be uniform in a given onFe-freesilicatesaprimecandidateforthewinddrivingmech- mass layer. Because of changing conditions in the atmosphere anism. In order for the grains to be efficient at scattering this andwind,however,grainsizeswilldifferfromlayertolayerand scenario requires particles of sizes in the range of 0.1−1µm. changewithtime. Recently Norris et al. (2012) claimed the detection of grains Each dynamic model is represented by a sequence of snap- with sizes of ∼ 0.3µm in the close circumstellar environment shotsoftheradialstructures,coveringtypicallyhundredsofpul- of 3 AGB stars, using multi-wavelength aperture-masking po- sation periods. From this long sequence we select a series of larimetricinterferometry. snapshots,equidistantinphase,duringthreeconsecutivepulsa- Given the success in reproducing dynamic and photometric tion periods. For these snapshots we produce spectra and pho- propertiesforthesmallsampleofwindmodelsdrivenbyphoton tometryinanaposterioriradiativetransfercalculation.Thesyn- scatteringonMg2SiO4grains,weherepresentthefirstextensive theticspectraarecomputedwithopacitiesfromtheCOMAcode setoftime-dependentwindmodelsforM-typeAGBstarsbased (Aringer,2000)andmeansyntheticphotometryiscalculatedby onthismechanism.Theaimofthisstudyistodemonstratethat phase-averagingoverthepulsationcycle. outflowscanbeproducednotonlyforafewselectedcases,but Thecurrentstudyincludes139solar-massmodelsofM-type alsoformodelswithawiderangeofstellarparameters.Wealso AGB stars, with effective temperatures ranging from 2600 to investigate how the observable properties of these models are 3200K. Three different luminosities have been used: 5000L , (cid:12) affectedbyvariousparameters,andwecompareourresultswith 7000L and10000L .Theseparameterswerechosentorepre- (cid:12) (cid:12) observations, in particular dynamic properties, visual and near- sent common M-type AGB stars, according to stellar evolution IRphotometry,andmid-IRspectra. models.Thepulsationperiodcontrollingthevariationsatthein- Thepaperisorganisedasfollows:inSect.2weintroducethe nerboundaryisderivedfromtheperiod-luminosityrelationpre- basicphysicalassumptionsandinputparametersforthedynam- sented in Feast et al. (1989) and the piston velocity amplitude ical models of M-type AGB stars. In Secs. 3-5 we evaluate the ∆u ranges between 2-4 km/s, depending on luminosity. This p windproperties,thevisualandnear-IRphotometryandthemid- resultsinshockamplitudesofabout15-20km/sintheinnerat- IRspectraproducedbythesemodelsandcomparewithobserved mosphere.Table1showsthecombinationofinputparametersof values. In Sect. 6 we explore constraints on the position of the themodels,sortedbyluminosity.Foreachfixedluminosity,the windaccelerationzoneandinSect.7weprovideasummaryof effective temperature, piston velocity amplitude and seed parti- ourconclusions. cleabundancearevariedaccordingtothevalueslisted. 2. Modellingmethodandparameters 3. Windproperties The models presented in this paper are similar to model set D Aschematicoverviewofthedynamicalpropertiesoftheavail- in Bladh et al. (2013), corresponding to the models first pre- ablemodelsisshowninFig.1.Therangeineffectivetemperature sentedinHo¨fner(2008b).Weonlygiveashortsummaryoftheir and luminosity is listed on the x-axis and y-axis, respectively. mainingredientshere.Formoredetailedinformationconcerning Eachsubsetconsistsoftwelveboxesandisorganisedsuchthat thedynamicalmodelsandtheaposterioriradiativetransfer,see the piston velocity is increasing upwards and the seed particle previous articles (Ho¨fner et al., 2003; Ho¨fner, 2008b; Bladh & abundanceisincreasingtowardstheright.Theredboxesrepre- Ho¨fner,2012;Bladhetal.,2013)andreferencestherein. sentmodelsthatdevelopastellarwind,theblueboxesrepresent The variable structures of the atmospheres and winds are modelswherenowindformsandthegreyboxesindicatecom- produced by simultaneously solving the equations of hydro- binations of parameters not tested or where the models fail for dynamics, frequency-dependent radiative transfer and time- numerical reasons. It is clear from this plot that the dynamical dependentgraingrowth,assumingsphericalsymmetry.Thestel- modelscanproduceoutflowsforawiderangeofstellarparame- larpulsationsaresimulatedbyadoptingsinusoidalvariationsof ters,althoughitisgenerallymoredifficulttodrivewindsforhigh velocityandluminosityattheinnerboundaryoftheatmosphere. When calculating the radiative acceleration of Mg SiO parti- 2 4 1 In contrast, nucleation in carbon-rich stars is often described by cles,grain-sizedependentopacitiesareused,takingintoaccount classicalnucleationtheory,assumingthattheseedparticleandmicro- bothscatteringandabsorptioneffects. scopicgrainsconsistofthesamematerial,i.e.amorphouscarbon.The Dust formation is considered as a two step process, start- values used here for the parameter n /n are comparable to values gr H ingwiththerapidformationoftinyseednucleiwithsizesinthe foundincarbonstarmodels. 2 S.Bladhetal.:Exploringwind-drivingdustspeciesincoolluminousgiantsIII. Table1.ThecombinationsofinputparametersforthemodelsofM-typeAGBstars,sortedaccordingtoluminosity.Thecolumns liststellarmass M ,stellarluminosity L ,effectivetemperatureT ofthestar,pulsationperiod P,pistonvelocityamplitude∆u (cid:63) (cid:63) (cid:63) p andtheassumedseedparticleabundancen /n .Thepulsationperiodisderivedfromtheperiod-luminosityrelationpresentedin gr H Feastetal.(1989). Modelseries M L T P(L ) ∆u logn /n (cid:63) (cid:63) (cid:63) (cid:63) p gr H [M ] [L ] [K] [d] [km/s] [a,b,c,d] (cid:12) (cid:12) L50 1 5000 2600–3000 310 3.0,4.0 −16.0,−15.5,−15.0,−14.5 L70 1 7000 2600–3100 395 3.0,4.0 −16.0,−15.5,−15.0,−14.5 L10 1 10000 2600–3200 525 2.0,3.0 −16.0,−15.5,−15.0,−14.5 demonstratedinFig.2,showingthegrainradiusaveragedover pulsation cycle in the outermost layers of the dynamical mod- 10000 elsthatproduceawind,sortedaccordingtoseedparticleabun- dance.Thedegreesofcondensedsilicon(Si)inthemodelsthat produceoutflowsareshowninFig.3,withtypicalvaluesrang- L]O • 7000 ionfgabbeotuwte1e0n−31.0T-2h5is%i,scionrrreesapsoonndabinlegatogrdeuemst-etnot-gwaisthmraescsenrattiroes- [ L sults by Khouri et al. (2014) for W Hya, who find that about a n /n gr H abc d onethirdofSiiscondensedintograins.Accordingtoourmodels 4 thedegreeofcondensedmagnesiumwillbeabouttwiceasmuch 5000 3 ∆up as for Si since Mg SiO has two magnesium atoms per silicon 2 4 2 atomandtheelementabundancesofSiandMgarecomparable. A comparison of wind velocities and mass-loss rates of 3200 3000 2800 2600 themodelswithcorrespondingempiricaldataforM-typeAGB T [K] stars,derivedfromobservationsofseveralCO-lines,isshownin eff Fig. 4. The agreement with observations is good, not the least Fig.1. Dynamic behaviour of the models as a function of in- consideringthatthissetofmodelsdoesnotcorrespondtoastel- putparameters.Theredrectanglesindicatemodelswithastellar lar population, but rather a grid of input parameters where not wind,thebluerectanglesindicatemodelswherenowindforms, allcombinationsofparametersareequallylikely.Bothhighand andthegreyrectanglesindicatecombinationsofparametersnot low mass-loss rates are reproduced, and higher mass-loss rates tested or where the models fail for numerical reason. For each could probably be reached by increasing the stellar luminosity combination of luminosity and effective temperature the seed ofthewindmodelsfurther. particleabundanceandpistonvelocityarevariedasindicatedby The four panels of Fig. 4 show the same data but the mod- theinsetbox.SeeTable1forthedifferentvaluesofseedparticle elsarecolour-codedindifferentwaystoillustratetheeffectsof abundancengr/nH(a-d). different input parameters. The top left panel of Fig. 4 shows the dynamical properties of the wind models, colour-coded ac- cording to luminosity. The models with different values for the effectivetemperaturesandlowluminosities.Judgingfromthese luminosityformbandswherehigherluminositycorrelateswith trends,modelswithlowereffectivetemperatureand/orhigherlu- highermass-lossrates.Ifweinsteadplotthedynamicalproper- minositythaninthiscurrentsamplecanbeexpectedtoproduce tiescolour-codedbyseedparticleabundance(lowerleftpanel), outflows.2 the models form bands correlating more with wind velocity. In While the effects of certain parameters are rather straight- rightpanelsofFig.4wealsoplotthemodelssortedaccordingto forward(L∗,T∗),orhavebeendiscussedinotherpapers(∆up), effective temperatures and piston velocities, but we see no dis- theseedparticleabundanceneedssomefurtherdiscussion.The tincttrendsinwindpropertieswithrespecttotheseparameters. rangeofvaluesforthisparameterislimitedonbothendssince photon scattering as a wind-driving mechanism requires grains in a certain size range (see Ho¨fner, 2008a, for a discussion). 4. Visualandnear-IRphotometry Fewer seeds make the growth of individual grains more effi- cient (less competition for material), but may actually lead to Dust-driven winds can be accelerated by both absorption and a smaller collective opacity if the grains grow beyond the op- scatteringofstellarphotonsondustgrains,butscatteringisonly timal size range. More seeds lead to stronger competition for significantifthegrainsgrowtoadequatesizes.Iftrueabsorption condensable material, resulting in smaller grains. This effect is is the dominant source of the radiative acceleration then sig- nificant circumstellar reddening will occur; the dusty envelope 2 ThecurrentsetofmodelsforM-typeAGBstarsdoesnotleadtoany willveilthemolecularfeaturesinthevisualwavelengthregion windmodelswithepisodicoutflows,whereassuchmodelsarefoundin and emit a significant infrared excess. If scattering is the dom- the grid forC-type AGB stars ofMattsson et al. (2010), asdiscussed inant source of the momentum there will be much less circum- byErikssonetal.(2014).Apossiblereasonforthedifferentwindbe- stellar reddening; changes in the molecular features during the haviouristhatdustparticleswithalargeabsorptioncross-sectioninthe pulsation cycle will be visible at visual wavelengths and there visualandnear-IR(e.g.amorphouscarbon)causeback-warmingeffects will not be much infrared excess, even though dust is present. intheatmosphere.Thisback-warmingcaninfluencethedustformation Sincethevisualandnear-IRspectraarestronglysensitivetothe inthelayersbelowandconsequentlythedynamics.Ifthewind-driving dust species is very transparent in the visual and near-IR (e.g. mag- wind-drivingmechanism,i.e.theopticalpropertiesofthewind- nesiumsilicates)andactingpredominatelythroughphotonscattering, drivingdustspecies,weusethecolours(J−K)and(V−K)when thenthisfeedbackthroughback-warmingwillnotoccur. comparingmodelresultswithobservationaldata.Thesourcesof 3 S.Bladhetal.:Exploringwind-drivingdustspeciesincoolluminousgiantsIII. -4 -4 Observations (Olofsson et al. 2002, Delgado et al. 2003) Observations (Olofsson et al. 2002, Delgado et al. 2003) L=5000 LO • Teff=2600-2700 K L=7000 LO • Teff=2800-2900 K M/yr])sun -5 L=10000 LO • M/yr])ν -5 Teff=3000-3200 K M/dt [ -6 M/dt [ -6 log (d -7 log (d -7 -8 -8 0 5 10 15 20 0 5 10 15 20 u [km/s] u [km/s] -4 -4 Observations (Olofsson et al. 2002, Delgado et al. 2003) Observations (Olofsson et al. 2002, Delgado et al. 2003) log n /n =-16.0 ∆u=2 km/s log ngr/nH=-15.5 ∆up=3 km/s M/yr])sun -5 lloogg nngggrrr//nnHHH==--1154..05 M/yr])ν -5 ∆upp=4 km/s M/dt [ -6 M/dt [ -6 log (d -7 log (d -7 -8 -8 0 5 10 15 20 0 5 10 15 20 u [km/s] u [km/s] Fig.4.Observedmass-lossratesvs.windvelocitiesofM-typeAGBstars(Olofssonetal.,2002;Gonza´lezDelgadoetal.,2003,plus signs)andthecorrespondingpropertiesofallmodelswhichdevelopawind(indicatedinredinFig.1).Allpanelsshowthesame databutwithdifferentcolourcodingaccordingtostellarluminosity(upperleft),effectivetemperature(upperright),seedparticle abundance(lowerleft)andpistonvelocityamplitude(lowerright).Thestellarmassisonesolarmassforallmodels. Table2.Inputparametersforthedynamicalmodelsresultingin withdifferentpositions,shapesandtilts.ForM-typeAGBstars, thephotometricvariationsshowninFig.5. both the synthetic and observed colour loops are characterised bylargevariationsin(V−K)andsmallvariationsin(J−K),as L T ∆u logn /n Line canbeseeninFig.5.Thecolour(V −K)reachesitspeakvalue (cid:63) (cid:63) p gr H L [K] [km/s] colour duringluminosityminimum,followedbyatroughduringlumi- (cid:12) 5000 2600 4.0 −15.0 red nositymaximum.Acloserexaminationofthesyntheticspectra 5000 2800 4.0 −15.0 red revealsthatthelargevariationsin(V−K)duringapulsationcy- 7000 2600 3.0 −15.0 green clearecausedbyachangeintheabundanceofmolecules(TiO, 7000 2800 3.0 −15.0 green see Fig. 6), and not by changes in the amount of dust present 7000 3000 3.0 −15.0 green (Bladh et al., 2013). This is a strong indication that the wind- 10000 2600 2.0 −15.0 blue driving dust species in M-type AGB stars are quite transparent 10000 2800 2.0 −15.0 blue in the visual and near-IR, otherwise these variations would not 10000 3000 2.0 −15.0 blue 10000 3000 3.0 −15.5 blue bedominatedbymolecularfeatures. 10000 3200 2.0 −15.5 blue LookingatFig.5,itisclearthatphase-averagedcolourswill beaffectedbyboththepositionoftheloopsinthecolour-colour diagram and the variations in colour during a pulsation cycle. the observational data sets used here are described in detail in Fig. 7 shows phase-averaged synthetic colours (filled squares), Bladhetal.(2013). aswellasobservedcoloursforbothM-type(greyandredplus AGBstarsarevariablestarswithphotometricpropertiesthat signs) and C-type AGB stars (green plus signs). The synthetic change with phase. Realistic dynamical models should be able colours are characterised by blue values in (J − K), especially toreproducethisphotometricvariationduringthepulsationcy- comparedtovaluesofC-typeAGBstars,withsmalldifferences cle. In Fig. 5 we plot the synthetic colour (J − K) vs. (V − K) betweentheindividualdynamicalmodels.Thereisastrongcor- forafewselectedmodelsduringapulsationcycle,togetherwith relationbetweentheeffectivetemperaturesofthemodelsandthe phase-dependentcoloursconstructedfromsinefitsofobserved valuesof(J−K),ascanbeseeninthetoprightpanelofFig.7. light curves (see Bladh et al., 2013, for more details). These Thisisprobablybecausethetemperatureofthestarhasastrong photometricvariationsformloopsinthecolour-colourdiagram, impactonthewaterfeatures(seeFig.6). 4 S.Bladhetal.:Exploringwind-drivingdustspeciesincoolluminousgiantsIII. lloogg nn //nn ==--1166..00 lloogg nn //nn ==--1155..55 ggrr HH ggrr HH 3.5 20 20 ber of models 1105 ber of models 1105 3.0 PLLLh===o571000to000m000 0LLe tLO O ••rO i•c variations from observed light curves m 5 m 5 u u 2.5 N N 0 0 0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 0.6 0.8 1.0 1.2 K)0 agr [µm] agr [µm] (J- 2.0 lloogg nn //nn ==--1155..00 lloogg nn //nn ==--1144..55 ggrr HH ggrr HH 20 20 odels 15 odels 15 1.5 m m of 10 of 10 mber 5 mber 5 1.0 u u N N 0 0 4 6 8 10 12 14 0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 0.6 0.8 1.0 1.2 agr [µm] agr [µm] (V-K)0 Fig.2. Grain sizes (averaged over pulsation cycle) at the outer 1.8 Photometric variations from observed light curves boundary of the models that produce a stellar wind, sorted ac- cordingtodifferentseedparticleabundancengr/nH. 1.6 LLL===571000000000 0LL LO O ••O • 30 25 K)0 1.4 (J- els 20 d o 1.2 m of 15 er b m 1.0 u 10 N 4 6 8 10 12 14 (V-K) 0 5 Fig.5.Photometricvariationsduringapulsationcyclein(J−K) 0 vs.(V−K).Theblackloopsshowphotometricvariationsderived 0.00 0.05 0.10 0.15 0.20 0.25 0.30 fromsinefitsofobservedlight-curvesforasetofM-typemiras fc (R Car, R Hya, R Oct, R Vir, RR Sco, T Col and T Hor) and thecolouredloopsshowsyntheticphotometricvariationfroma Fig.3.ThefractionofSiatomscondensedintograins,averaged few selected models (see Table 2). For the observed miras we over pulsation cycle at the outer boundary of the models that adopted photometric data in the visual from Eggen (1975) and produceastellarwind. Mendoza(1967)andcomplementedthosewiththenear-IRdata published by Whitelock et al. (2000). The synthetic loops are calculated from sine fits of the light-curves in the same way as the observational data. See Bladh et al. (2013) for more details concerningthesinefitofobservedlightcurves.Thebottompanel The phase-averaged synthetic (V − K) colours show large showsthesamedataasthetoppanel,butzoomedin.Theobser- differencesbetweenindividualmodels.Thevaluesofthemean vationsingrey(plussigns)arepresentedinFig.7. (V − K) colours are mostly determined by the range of varia- tion during the pulsation cycle, i.e. how far the loops extend to thebluesideofthediagram.Asmentionedabove,thevariation 1038 V I J H K invisualfluxesisdeterminedbychangesinTiO,whichinturn reflects changes in temperature during the pulsation cycle. The 1037 stronger the temperature variations, the wider the loops, result- inginblueraverage(V−K)colours. /s] 1036 g syntThheteicccoonlcoluurssiornepwroeducacnewdreallwthferoombseFrivge.d7coislotuhrastftrhoemmfieealdn L [erλ 1035 λ M-typeAGBstars(Mendoza,1967)andthebulkoftheobserved 1034 values from Bulge miras (Groenewegen & Blommaert, 2005), especially the large spread in (V − K). The observed colours 1033 Original spectrum Spectrum calculated without TiO from Bulge miras show a much larger spread in (J − K) than Spectrum calculated without HO 2 thesyntheticcolours,butthiscouldpartlybeduetometallicity 1032 effectsandthefactthatweassumesolarabundancesofCandO 0.4 0.6 0.8 1.0 2.0 inthemodels.AhigherC/O-ratio(closerto1thanthe0.48that λ [µm] we assume) should give redder values of (V −K) and (J −K), Fig.6. Spectral energy distribution as a function of wavelength judgingfromhydrostaticmodelatmospheres. for a model with input parameters M =1M , L=5000L , (cid:12) (cid:12) T =2800K, u =4km/s, and logn /n =14.5. The original ∗ p gr H spectrumisshowninblackandthecolouredcurvesshowspectra 5 calculatedwithoutTiOopacities(red)andH Oopacities(blue), 2 indicatingwhichphotometricbandswillbeaffectedbychanges inthecorrespondingfeatures. S.Bladhetal.:Exploringwind-drivingdustspeciesincoolluminousgiantsIII. 3.5 3.5 Bulge miras (G&B 2005) Bulge miras (G&B 2005) Field C-type LPVs (Bergeat et al. 2001) Field C-type LPVs (Bergeat et al. 2001) 3.0 Field M-type LPVs (Mendoza 1967) 3.0 Field M-type LPVs (Mendoza 1967) L=5000 LO • Teff=2600-2700 K L=7000 LO • Teff=2800-2900 K 2.5 L=10000 LO • 2.5 Teff=3000-3200 K K)0 K)0 (J- 2.0 (J- 2.0 1.5 1.5 1.0 1.0 4 6 8 10 12 14 4 6 8 10 12 14 (V-K) (V-K) 0 0 3.5 3.5 Bulge miras (G&B 2005) Bulge miras (G&B 2005) Field C-type LPVs (Bergeat el al. 2001) Field C-type LPVs (Bergeat et al. 2001) 3.0 Field M-type LPVs (Mendoza 1967) 3.0 Field M-type LPVs (Mendoza 1967) log n /n =-16.0 ∆u=2 km/s log ngr/nH=-15.5 ∆up=3 km/s log ngr/nH=-15.0 ∆up=4 km/s 2.5 log ngr/nH=-14.5 2.5 p gr H K)0 K)0 (J- 2.0 (J- 2.0 1.5 1.5 1.0 1.0 4 6 8 10 12 14 4 6 8 10 12 14 (V-K) (V-K) 0 0 Fig.7. Observed and mean synthetic colours (J −K) vs. (V −K). The observational data (plus signs) is compiled from different sources:GalacticBulgemiras(Groenewegen&Blommaert,2005,grey),fieldM-typeLPVs(Mendoza,1967,red),andC-richgiants (Bergeatetal.,2001,green).Themodeldata(filledsquares)isfrommodelswhichdevelopawind,asindicatedinredinFig.1.All panelsshowthesamedatabutwithdifferentcolourcodingaccordingtostellarluminosity(upperleft),effectivetemperature(upper right),seedparticleabundance(lowerleft)andpistonvelocity(lowerright).Thestellarmassisonesolarmassforallmodels.Most oftheobservationaldataaresingleepochmeasurements,whereasthesyntheticcoloursaremeansoverthepulsationcycle. 5. Mid-IRspectra face,butitalsoleadstoarapidlyfallingdusttemperatureinthe wind. An issue with the current wind models is that, although they In order to produce silicate features, the grain temperature producedynamicalpropertiesandphotometryinthevisualand needs to fall less rapidly with distance from the star than for near-IRinagreementwithobservations(seeSecs.3and4),they pure Mg SiO grains. Fig. 8 indicates that the inclusion of Fe donotshowtheprominentsilicatefeaturesat10µmand18µm 2 4 in the silicates will help to achieve this; for MgFeSiO grains that are observed in many oxygen-rich AGB stars. These sili- 4 (redcurves)lightismostlyabsorbedinthenear-IRwavelength cate features have been identified as belonging to magnesium- regionandthenemittedinmid-IRregion.However,becauseof iron silicates, such as olivine ([Mg,Fe] SiO ) and pyroxene 2 4 the increased near-IR absorption Fe-bearing silicates can only ([Mg,Fe]SiO ), and are caused by stretching and bending res- 3 become thermally stable further away from the star. Simple onancesintheSiO -tetrahedron. 4 The optical properties of Fe-free silicates offer an explana- estimates and results from dynamical models with frequency- dependentradiativetransferpredictthatsilicateswithsignificant tion as to why the synthetic spectra do not show these promi- Fecontent(e.g.MgFeSiO )becomestableat5−10R (Woitke, nent features. In the wavelength region where AGB stars emit 4 ∗ 2006;Ho¨fner,2008a;Bladh&Ho¨fner,2012).Woitke(2006)in- mostoftheirfluxtheabsorptioncross-sectionofmagnesiumsil- vestigatedthegrowthofinhomogeneousdustgrains,composed icates is very low, in particular compared to the spectral fea- ofamixtureofMg SiO ,SiO ,Al O ,TiO ,andsolidFeina tures at 10 µm and 18 µm, so the heating of the grains by 2 4 2 2 3 2 stellar light is moderately efficient. Fig.8 shows the absorbed stellar outflow. He found that once Fe inclusion is possible, it will control the temperature of the inhomogeneous dust grains and emitted light for Mg SiO grains (black curves), assuming 2 4 and act as a thermostat, keeping the grain temperature just be- a geometrically diluted radiative flux from a hydrostatic atmo- lowthesublimationlimit.TheamountofincludedFeisthereby sphere (with stellar parameters typical of an M-type AGB star M =1M ,L=5000L andT =2800K) and a dust tempera- adjustedinaself-regulatingprocess. (cid:12) (cid:12) ∗ ture of T =1000K. The energy balance is set mostly in the Totestthisscenarioweuseasnapshotoftheradialstructure d mid-IR wavelength region and the grains cool efficiently. This from a dynamical model where the wind is driven by photon is the reason why such grains can form close to the stellar sur- scatteringonMg SiO grains.Intheaposterioriradiativetrans- 2 4 6 S.Bladhetal.:Exploringwind-drivingdustspeciesincoolluminousgiantsIII. 10-4 2000 Absorbed flux (MgSiO) 2 4 AbsEomrbiettde dfl uflxu x(M (MgFge2SSiiOO4)) Pure Mg2SiO4 with Tmin=800K 10-6 Emitted flux (MgFeSiO44) 1000 Pure Mg2SiO4 with Tmin=500K Fλ 2000 Qabs 10-8 Pure Mg2SiO4 Mg2SiO4 core and 1% MgFeSiO4 mantle 1000 10-10 K] T [ 2000 10-12 Pure Mg2SiO4 Mg2SiO4 core and 5% MgFeSiO4 mantle 1000 1 10 λ [µm] 2000 Fig.8. Absorbed and emitted flux, Q (λ)F and Q (λ)B , abs λ abs λ for two different grain materials, Mg2SiO4 (black) and Pure Mg2SiO4 Mg2SiO4 core and 10% MgFeSiO4 mantle MgFeSiO (red). The absorbed light is calculated using a ge- 1000 4 ometrically diluted radiation field from a hydrostatic atmo- sphere (at 2R for Mg SiO and at 10R for MgFeSiO ) ∗ 2 4 ∗ 4 with stellar parameters typical of an M-type AGB star 2 4 6 8 10 (M =1M(cid:12),L=5000L(cid:12)andT∗ =2800K).Theemittedlightis r [R*] calculated usinga Planckiansource functionat agrain temper- ature of T =1000K. The optical data for Mg SiO is from Fig.9.Graintemperatureasafunctionofdistancefromthestar Ja¨ger et al.d(2003) and the optical data for MgF2eSiO4 is from foramodelwithstellarparametersM =1M(cid:12),L=5000L(cid:12)and Dorschneretal.(1995).Wenotethatthelocalradiatio4nfieldin T∗ =2800Kduringluminosityminimum.Toppanel:Theorigi- thewind-accelerationzonewillbemorepronouncedinthemid- naltemperaturestructureoftheMg2SiO4 grains(black)andthe IRregionthanwhatisshownherebecauseoftheadditionofthe temperature structure when setting a minimum temperature of emittedlightfromthedustcomponent. 800K (red) and 500K (blue). Lower panels: The original tem- perature structure of the Mg SiO grains (black) and the tem- 2 4 peraturestructureofdustparticleswithacoreofMg SiO anda 2 4 fercalculationswesetalowerlimitonthegraintemperatureat mantleofMgFeSiO whenitisthermallystable(T < 1000K), 4 800Kor500K,asifthegrainscontainedimpuritiesthatwould as indicated by the vertical grey line. The green, red and blue keepthemwarm.ThetoppanelofFig.9showstheoriginaltem- linesshowthetemperaturestructureforamantlesizethatis1%, peraturestructurefortheMg SiO particles,aswellasthecases 5%and10%ofthegrainradius,respectively. 2 4 where a minimum dust temperature of 800K and 500K is set. TheresultingspectraareshowninthetoppanelofFig.10.Itis clearfromtheprominentsilicatefeaturesproducedinthelatter casesthatthemissingspectralfeaturesarenotcausedbyalow abundanceofsilicatedustinthedynamicalmodels,butrathera 1000K (approximately the temperature where magnesium-iron too low grain temperature. Keeping the grains warm results in silicateswillcondense).Theresultingtemperaturestructurefor silicate emission features. The warmer the grains are, the more threedifferentmantlesizes(1%,5%and10%oftheradiuscor- prominentthefeatures. responding to 3%, 15% and 30% of the volume) are shown in As mentioned above, a way to increase the grain tempera- Fig.9 and the corresponding spectra are shown in the bottom ture is to include impurities of Fe in the Mg SiO grains. This panel of Fig.10. We note that dust particles with a thin mantle 2 4 can be simulated by considering dust particles with a core of of MgFeSiO may be thermally stable quite close to the stellar 4 Mg SiO and a thin mantle of MgFeSiO , as if a small frac- surface compared to pure MgFeSiO grains. For the minimum 2 4 4 4 tion of Fe had condensed onto the surface of pure magnesium luminosityphaseofthisparticularmodelthecore-mantlegrains silicate grains.3 We determine the temperature of these grains becomethermallystableat∼ 2.5R ,∼ 4.5R and∼ 5.5R ,re- ∗ ∗ ∗ through radiative equilibrium, assuming that the addition of a spectively, if the mantle is 1%, 5% or 10% of the grain radius. thin mantle MgFeSiO will not significantly change the struc- The overall temperature structure and, consequently, the radial 4 tureofthedynamicalmodel.Intheaposteriorispectralcalcu- distances at which dust particles are thermally stable, will vary lationwereplacethetemperaturestructureandtheopticalprop- duringthepulsationcycle,anddependonthestellarparameters. erties of the Mg SiO grains with the corresponding properties 2 4 Tosummarisetheresultsfromthesecondtest,itseemsthat for the core-mantle grains from the point where they are ther- a thin mantle of Fe-bearing silicates, in this case consisting of mallystable.Weassumethistobeatthedistancefromthestar MgFeSiO , can be thermally stable quite close to the stellar 4 where the temperature of the core-mantle grains drops below surface. This thin mantle of MgFeSiO corresponds to a small 4 Fe/Mg-ratio but is enough to heat the dust particles and pro- 3 Itispossibletointroducethismodificationintheaposteriorira- ducesilicatefeatureswithoutchangingthespectrainthevisual diativetransfersincetheinclusionofasmallamountofothermaterials andnear-IRsignificantly.Forillustration,Fig11showstheISO into these particles should not alter the overall structure of the mod- els significantly; transparent materials will not have enough radiative spectraoftwoM-typeAGBstars,RAqrandRCas,inaddition cross-sectiontoaltertheenergybalanceandopaquematerialsareonly totheoriginalmodelspectrumandthemodelspectrawithathin thermallystablefurtheroutinthewind. mantleofMgFeSiO ontopoftheMg SiO grains. 4 2 4 7 S.Bladhetal.:Exploringwind-drivingdustspeciesincoolluminousgiantsIII. 10.0 1038 V I J H K L M R Aqr (Kramer 2002, Sloan 2003) 1037 d flux [Jy] 1.0 e L [erg/s]λ 11003356 Normaliz 100..01 151P0%%u%r eMM MMgggFFgFee2SeSSiSiiOOOiO444 g4mm rmaaaiannnnttseetelll λ R Cas (Kramer 2002, Sloan 2003) 1034 ux [Jy] 1033 Lower limit of theO druigstin taelm dpuesrta tteumrep aetr a5t0u0rKe alized fl 1.0 Lower limit of the dust temperature at 800K m 1032 Nor 0.1 1 10 λ [µm] 10 λ [µm] 1038 V I J H K L M Fig.11.Spectralenergydistributionasafunctionofwavelength. The red curves shows the observed ISO/SWS spectra of R Aqr 1037 andRCas(Kraemeretal.,2002;Sloanetal.,2003).Theblack solid curve shows the spectra from a dynamical model using g/s] 1036 pureMg2SiO4grainsandthegreycurvesshowthespectrawhen L [erλ 1035 apsossutemriionrgiaspceocrteraolfcMalcgu2lSaitOio4nasn.dThaemdaanshtleedo,fdMot-gdFaesShieOd4ainndthdeota- λ tedlinesshowthespectrasettingthemantlesizeto1%,5%and 1034 10%ofthegrainradius,respectively. Pure MgSiO grains 2 4 1033 Mg2SiO4 core, MgFeSiO4 mantle (1% of the radius) MgSiO core, MgFeSiO mantle (5% of the radius) 2 4 4 MgSiO core, MgFeSiO mantle (10% of the radius) 2 4 4 1032 Underradiativeequilibriumconditions,grainsofthismate- 1 10 rial tend to cool rapidly in the wind (because of their optical λ [µm] properties,asdiscussedinSect.5),withgraintemperaturesgen- erallyafewhundreddegreesbelowthegastemperature.Setting Fig.10. Spectral energy distributions as a function of wave- the grain temperature equal to the warmer gas temperature, in- length resulting from the dust temperatures indicated in Fig. 9. stead of assuming radiative equilibrium, results in shifting the The black curve shows the original spectrum for a dynamical positionofthedustformationzoneslightlyoutwards.Thispro- modelwithpureMg SiO grains(M =1M , L=5000L and 2 4 (cid:12) (cid:12) videsuswithanopportunitytoexplorehowtheradialposition T∗ =2800K). Top panel: The spectra produced when setting a of the wind acceleration zone affects dynamic and photometric minimumgraintemperatureof800K(blue)and500K(red)for properties. Fig. 12 shows the position of the onset of outflow, the pure Mg SiO grains, i.e. using the temperature structure 2 4 averaged over a pulsation cycle, for the two types of models. in the top panel of Fig. 9. Bottom panel: The spectra produced The red area shows the results from models with a grain tem- whenusingacoreofMg SiO andamantleofMgFeSiO .The 2 4 4 peraturedeterminedbyradiativeequilibrium,indicatingatypi- green, red and blue lines show the spectra for a mantle size of caldistanceoftheonsetofoutflowsofabout2−3R ,whereas 1%,5%and10%oftheradius,respectively.Thecorresponding ∗ theblueareashowstheresultsfromthemodelswherethegrain temperaturestructuresareshowninthelowerpanelsofFig.9 temperatureissetequaltothegastemperature,indicatingtypical distancesofabout3−6R (thepurpleareashowstheoverlapping ∗ region). 6. Graintemperatureandtheonsetofoutflow This shift in the radial position of the wind acceleration The grain temperature in our dynamical models is assumed to zoneaffectstheobservablepropertiesofthedynamicalmodels. be determined by radiative equilibrium, but the low absorption Fig.13showsthemass-lossratesandwindvelocitiesofthemod- cross-sectionofMg SiO inthewavelengthregionwhereAGB els with a dust temperature based on radiative equilibrium (red 2 4 stars emit most of their flux raises the question if this assump- squares) and the models where we have assumed that the dust tionisrealistic.Gaugeretal.(1990)haveestimatedtherelative temperatureisequaltothegastemperature(bluesquares).Both importance of different processes (radiative, collisional, chem- fitobservationsreasonablywell,butthebluemodels(wherethe ical) for changing the internal energy of dust particles consist- wind acceleration zone is shifted outwards to lower densities) ing of amorphous carbon or astronomical silicates. They found donotreproducetheobservationswithhighvaluesofmass-loss thatradiativeprocessesdominatebymanyordersofmagnitude rate and wind velocity, while the stars with low mass loss and over collisional processes in both cases. However, these mate- slowwindvelocitiesseemtobebetterreproduced. rialshavehighabsorptioncross-sectionsinthevisualandnear- Incontrasttothedynamicalproperties,photometryprovides IRwavelengthregions, leadingtoefficientradiativeheating. In strongconstraintsonthepositionofthewindaccelerationzone. Appendix A we give estimates for the radiative and collisional ThetoppanelofFig.14showstheaveragecolours(J−K)and heatingratesofMg SiO grains:whileradiativeheatingismuch (V − K) during a pulsation cycle for the two types of models. 2 4 lessefficientthanforthematerialstestedbyGaugeretal.(1990), The photometry of the models where the grain temperature is it still clearly dominates over heating by collisions with the setequaltothegastemperature(bluesquares)isverysimilarto warmergas. thephotometryforpulsatingmodelswithoutwind(seeFig.4in 8 S.Bladhetal.:Exploringwind-drivingdustspeciesincoolluminousgiantsIII. 1.0 -4 Observations (Olofsson et al. 2002, Delgado et al. 2003) Dust temperature det. by rad. equilibrium Dust temperature equal to gas temperature 0.8 r]) -5 y / els Msun mod0.6 dt [ -6 / of M n d ctio0.4 og ( -7 a l r F 0.2 -8 0 5 10 15 20 u [km/s] 0.0 0 1 2 3 4 5 6 7 8 9 10 Fig.13.Observedmass-lossratesvs.windvelocitiesofM-type r[R∗] AGBstars(Olofssonetal.,2002;Gonza´lezDelgadoetal.,2003, plus signs) and the corresponding properties for the dynamical Fig.12. Position of the onset of outflow for all models devel- models where the dust temperature is determined by radiative oping a wind, averaged over the pulsation cycle. The red and equilibrium (red squares) or set equal to the gas temperature blue areas represent models where the grain temperature is de- (blue squares). The filled squares mark the dynamical models termined by radiative equilibrium and models where the grain whereamoredetailedanalysisisconducted. temperatureissetequaltothegastemperature,respectively.The purpleareaiswherethetwotypesofmodelsoverlap. 3.5 Bulge miras (G&B 2005) Field C-type LPVs (Bergeat et al. 2001) 3.0 Field M-type LPVs (Mendoza 1967) Bladhetal.(2013)),whereasthephotometryofthemodelsbased Dust temperature det. by rad. equilibrium onradiativeequilibrium(redsquares)arebluerin(V−K).Anin- Dust temperature equal to gas temperature depthcomparisonisgiveninthelowerpanelofFig.14,showing 2.5 thephotometricvariationsduringapulsationcycle.Theredand K)0 bpleuraetuloroepissasreetfirnomdifftweroendtynwaamyiscablumt wodheiclshwohtheererwthiseedhuasvtetetmhe- (J- 2.0 same model parameters. The black loops show observed pho- 1.5 tometric variations from a set of very regular mira stars (for a more detailed description of the observational data see Bladh et al. (2013)). The large variations in (V − K) seen in the ob- 1.0 servedphotometryarenotreproducedinthemodelswithagrain temperaturesetequaltothegastemperature. 4 6 8 10 12 14 Itshouldbementionedhereagainthattheeffectsonthepho- (V-K)0 tometriccoloursarenotduetodustopacities.Insteadthevisual 1.8 and near-IR photometry of the models gives direct diagnostics Photometric variations from observed light curves Dust temperature det. by rad. equilibrium ofthegas,i.e.thestructureanddynamicsoftheatmosphere.As Dust temperature equal to gas temperature mentionedinSect.4,thelargevariationsobservedin(V−K)are 1.6 a consequence of a change in the abundance of TiO during the pulsationcycle.Thepositionoftheonsetofoutflowaffectsthe overall density and temperature structure of the gas and, con- K)0 1.4 sequently,themolecularabundances,byradiallyexpandingthe (J- atmosphere outwards. If the wind acceleration zone is shifted todistanceswherethiseffectnolongerinfluencesthestructure 1.2 of the inner atmosphere, then the resulting photometry will re- semblethatofapulsatingatmospherewithoutastellarwind.It seemsthattheobservedvariationsin(V−K)donotonlyreveal 1.0 thatthewind-drivingdustspeciesinM-typeAGBstarshaveto 4 6 8 10 12 14 bequitetransparentinthevisualandnear-IR,buttheyalsopro- (V-K) 0 videanupperlimitforthedistanceoftheonsetofoutflow.We notethatthisupperlimitprobablyalsoholdsifadifferentmech- Fig.14. Observed and synthetic visual and near-IR colours. anismthanradiationpressureondustacceleratesthewind,since Top panel: Synthetic phase-averaged colours from wind mod- thediagnosticpresentedhereisbasedongasproperties. els where the dust temperature is determined by radiative pro- cesses (red squares) and the gas temperature (blue squares). Bottom panel: Photometric variations derived from sine fits of 7. Summaryandconclusions observedlight-curvesforasamplesetofM-typemiras.Thesyn- thetic photometric variations for the models marked with filled Inthispaperwepresentthefirstextensivesetoftime-dependent squares (M =1M , L=5000L , T =2800K, u = 4 km/s models for atmospheres and winds of M-type AGB stars. The and logn /n = (cid:12)−15) in the to(cid:12)p pa∗nel are also pplotted (solid gr H redandblueloops).Thecoloursarecalculatedfromsinefitsof light-curves,sameasfortheobservationaldata.SeeBladhetal. 9 (2013)formoredetailsconcerningthesine-fitofobservedlight curves.FordetailsontheobservationaldataseeFig.5. S.Bladhetal.:Exploringwind-drivingdustspeciesincoolluminousgiantsIII. stellarwindsinthesemodelsaredrivenbyphotonscatteringon References Mg SiO dust. Grains of this material can form close enough 2 4 Aringer,B.2000,PhDthesis,Univ.ofVienna to the stellar surface, they consist of abundant materials and, if Bergeat,J.,Knapik,A.,&Rutily,B.2001,A&A,369,178 they grow to sizes comparable to the wavelength of the stellar Bladh,S.&Ho¨fner,S.2012,A&A,546,A76 flux maximum, can provide sufficient radiative acceleration to Bladh,S.,Ho¨fner,S.,Nowotny,W.,Aringer,B.,&Eriksson,K.2013,A&A, driveoutflows. 553,A20 Dorschner,J.2010,inLectureNotesinPhysics,BerlinSpringerVerlag,Vol. The current study includes 139 solar-mass models, using 815,LectureNotesinPhysics,BerlinSpringerVerlag,ed.T.Henning,1–60 three different luminosities (5000L(cid:12), 7000L(cid:12) and 10000L(cid:12)) Dorschner,J.,Begemann,B.,Henning,T.,Jaeger,C.,&Mutschke,H.1995, andeffectivetemperatures rangingfrom 2600K to3200K(see A&A,300,503 Table1).Theinputparametersdescribingstellarpulsationsand Eggen,O.J.1975,ApJS,29,77 Eriksson,K.,Nowotny,W.,Ho¨fner,S.,Aringer,B.,&Wachter,A.2014,A&A, seed particle abundance are also varied for each combination 566,A95 of stellar parameters, resulting in different atmospheric struc- Feast,M.W.,Glass,I.S.,Whitelock,P.A.,&Catchpole,R.M.1989,MNRAS, tures and wind properties. The models produce outflows for a 241,375 wide range of stellar parameters (see Fig. 1), as well as mass- Gail,H.-P.&Sedlmayr,E.1999,A&A,347,594 Gauger,A.,Gail,H.-P.,&Sedlmayr,E.1990,A&A,235,345 loss rates, wind velocities, and visual and near-IR photometry Gonza´lezDelgado,D.,Olofsson,H.,Kerschbaum,F.,etal.2003,A&A,411, in good agreement with observations (see Fig. 4 and Fig. 7). 123 This demonstrates that winds driven by photon scattering on Groenewegen,M.A.T.&Blommaert,J.A.D.L.2005,A&A,443,143 Mg SiO grainsisaviablescenarioforthemasslossofM-type Ho¨fner,S.2008a,PhysicaScriptaVolumeT,133,014007 2 4 AGB stars. However, the current models do not show the char- Ho¨fner,S.2008b,A&A,491,L1 Ho¨fner,S.,Gautschy-Loidl,R.,Aringer,B.,&Jørgensen,U.G.2003,A&A, acteristic silicate features at 10and18µm. This is not caused 399,589 by a low abundance of silicate dust in the dynamical models, Ja¨ger,C.,Dorschner,J.,Mutschke,H.,Posch,T.,&Henning,T.2003,A&A, but rather a too rapidly falling temperature of Mg SiO grains. 408,193 2 4 AddingathinmantleofMgFeSiO tothesegrains,atdistances Khouri,T.,deKoter,A.,Decin,L.,etal.2014,A&A,570,A67 4 Kraemer,K.E.,Sloan,G.C.,Price,S.D.,&Walker,H.J.2002,ApJS,140,389 wheresuchamantlecanbethermallystable,increasesthegrain Mattsson,L.,Wahlin,R.,&Ho¨fner,S.2010,A&A,509,A14 temperatureandresultsinspectrawithpronouncedsilicatefea- Mendoza,E.E.1967,BoletindelosObservatoriosTonantzintlayTacubaya,4, tures. 114 The visual and near-IR spectra provide constraints on the Molster, F. J., Waters, L. B. F. M., & Kemper, F. 2010, in Lecture Notes in Physics,BerlinSpringerVerlag,ed.T.Henning,Vol.815,143–201 drivingmechanismoftheoutflows.Stellarwindsdrivenbypho- Norris,B.R.M.,Tuthill,P.G.,Ireland,M.J.,etal.2012,Nature,484,220 ton scattering will produce very different spectra than winds Olofsson,H.,Gonza´lezDelgado,D.,Kerschbaum,F.,&Scho¨ier,F.L.2002, driven by true absorption, as there is much less circumstellar A&A,391,1053 reddeningbythedustcomponentintheformercase.Thisiscon- Sloan,G.C.,Kraemer,K.E.,Price,S.D.,&Shipman,R.F.2003,ApJS,147, firmedbyobservedandsyntheticcoloursofM-typeAGBstars; 379 Whitelock,P.,Marang,F.,&Feast,M.2000,MNRAS,319,728 the visual and near-IR fluxes are characterised by large varia- Woitke,P.2006,A&A,460,L9 tionsin(V −K)andsmallvariationsin(J−K)duringthepul- sationcycle(seeFig.5).Thevariationsin(V−K)arecausedby changes in the molecular abundances (mostly TiO) and not by AppendixA: HeatingofMg SiO grains 2 4 changesinthedustopacities(seeFig.6andBladhetal.,2013). FromthiswecaninferthattheenvelopesofM-typeAGBstars, Theverylowabsorptioncross-sectionofMg SiO grainsinthe 2 4 and, consequently, the dust grains, are quite transparent in the wavelengthregionwhereAGBstarsemitmostoftheirfluxraises visualandnear-IRwavelengths,otherwisethespectralchanges thequestionifgrainheatingisdominatedbyradiationorcolli- would not be dominated by molecular features. The results re- sionwiththewarmergas.Estimatesoftheprocessesthatdeter- gardingthemid-IRfeaturesmentionedabove,however,indicate minetheinternalenergyofadustparticle,andconsequentlythe thatthegrainshavetoincludeasmallamountofimpurities(dirty grain temperature, have previously been done by Gauger et al. silicates). Preliminary tests demonstrate that including a small (1990) for amorphous carbon and astronomical silicates. Both amountofFeinmagnesiumsilicategrainsissufficienttosolve materialshavehighabsorptioncross-sectionsinthenear-IRand, theproblemofgraintemperaturesandthatthevisualandnear- consequently, radiative processes dominate over collisional en- IRphotometrywillnotbeaffectedsignificantly.Futuremodels ergyexchange.Themid-IRopticalpropertiesofMg SiO grains 2 4 shouldincludeamorecompletetreatmentofdustformation. (relevant for radiative cooling, see Sect. 5) are comparable to Themodelspresentedinthispaperareanimportantstepto- thoseofastronomicalsilicates.However,thenear-IRabsorption wardsclosingalongstandinggapinstellarevolutiontheory.For coefficients, which determine the radiative heating, are several thefirsttime,itispossibletocomputebothmass-lossratesand orders of magnitudes lower than those of Fe-bearing silicates. thecorrespondingspectrafromthesametime-dependentatmo- Therefore we need to examine if radiative heating still domi- sphereandwindmodelsofM-typeAGBstars.Thisisessential natesoverheatingbycollisionswiththewarmergasinthecase input for models of stellar evolution and population synthesis. ofMg2SiO4grains.4 However, before the model results can be generally applied in Westartbyestimatingtheenergyexchangeoccurringwhen thesecontextsitisnecessarytocomputeabiggergridwithbet- a dust particle of size a and temperature Td collides with a gas tercoverageofmass,luminosity,effectivetemperatureandother particleoftemperatureTg, fundamentalparameters. k ∆E = (T −T ), coll 4π g d Acknowledgements. Thecomputationswereperformedonresourcesprovided bytheSwedishNationalInfrastructureforComputing(SNIC)atUPPMAX.This 4 Gaugeretal.(1990)consideredathirdprocess,i.e.energychange workhasbeenfundedbytheSwedishResearchCouncil(Vetenskapsrådet).The duetoassociationordisassociationofonemonomer.Theyfoundthisto authorsalsoacknowledgethesupportfromtheprojectSTARKEYfundedbythe benegligiblecomparedtocollisionalprocesses,andsimilarreasoning ERCConsolidatorGrant,G.A.n.615604. holdsforthecurrentcase. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.