ebook img

Explicit Nonlinear Model Predictive Control: Theory and Applications PDF

240 Pages·2012·6.744 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Explicit Nonlinear Model Predictive Control: Theory and Applications

Lecture Notes in Control and Information Sciences 429 Editors ProfessorDr.-Ing.ManfredThoma InstitutfuerRegelungstechnik,UniversitätHannover,Appelstr.11,30167Hannover, Germany E-mail:[email protected] ProfessorDr.FrankAllgöwer InstituteforSystemsTheoryandAutomaticControl,UniversityofStuttgart, Pfaffenwaldring9,70550Stuttgart,Germany E-mail:[email protected] ProfessorDr.ManfredMorari ETH/ETLI29,Physikstr.3,8092Zürich,Switzerland E-mail:[email protected] SeriesAdvisoryBoard P.Fleming UniversityofSheffield,UK P.Kokotovic UniversityofCalifornia,SantaBarbara,CA,USA A.B.Kurzhanski MoscowStateUniversity,Russia H.Kwakernaak UniversityofTwente,Enschede,TheNetherlands A.Rantzer LundInstituteofTechnology,Sweden J.N.Tsitsiklis MIT,Cambridge,MA,USA Forfurthervolumes: http://www.springer.com/series/642 Alexandra Grancharova and Tor Arne Johansen Explicit Nonlinear Model Predictive Control Theory and Applications ABC Authors Assoc.Prof.Dr.AlexandraGrancharova Prof.TorArneJohansen InstituteofSystemEngineeringand DepartmentofEngineeringCybernetics Robotics NorwegianUniversityofScienceand BulgarianAcademyofSciences Technology Sofia Trondheim Bulgaria Norway ISSN0170-8643 e-ISSN1610-7411 ISBN978-3-642-28779-4 e-ISBN978-3-642-28780-0 DOI10.1007/978-3-642-28780-0 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012933325 (cid:2)c Springer-VerlagBerlinHeidelberg2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To myparentsAssoc.Prof.Dr. SiykaPopova andProf.D.Sc. Ivan Grancharovfortheir loveandsupport (AlexandraGrancharova) Preface Model predictive control (MPC) has become the accepted methodology to solve complexcontrolproblemsrelatedtoprocessindustries.Itallowsthedesignofmulti- inputmulti-output(MIMO)controlsystemsthatminimizeacertainperformancein- dexinthepresenceofinputandoutputconstraints.TheNonlinearModelPredictive Control (NMPC) is an optimization-based method for control which involves the solution at each sampling instant of a finite horizonoptimal controlproblem sub- jecttothenonlinearsystemdynamicsandinputandoutputconstraintsimposedon thesystem.However,thesolutionofanon-linenonlinearoptimizationproblemis oftencomputationallycomplexandtimeconsumingandthereal-timeNMPCimple- mentationisusuallylimitedtoslowprocesseswherethesamplingtimeissufficient to supportthe computationalneeds.The on-linecomputationalcomplexitycan be circumventedwith an explicit approach to NMPC, where an explicit approximate representation of the solution is computed using multi-parametric Nonlinear Pro- gramming(mp-NLP). Motivation The main motivation behind explicit MPC is that an explicit state feedback law avoidstheneedforexecutinganumericaloptimizationalgorithminrealtime,and isthereforepotentiallyusefulforapplicationswhereMPChasnottraditionallybeen used.IthasbeenshownthatthefeedbacksolutiontoMPCproblemsforconstrained linear systems has an explicit representation as a piecewise linear state feedback definedona polyhedralpartitionof the state space. Thebenefitsofan explicit so- lution,inadditiontotheefficienton-linecomputations,includealsoverifiabilityof the implementation(whichis anessential issue in safety-criticalapplications)and thepossibilitytodesignembeddedcontrolsystemswithlowsoftwareandhardware complexity.FornonlinearMPCtheprospectsofexplicitsolutionsareevenhigher thanforlinearMPC,sincethebenefitsofcomputationalefficiencyandverifiability areevenmoreimportant. VIII Preface ThemainreasonstodevelopmethodsforexplicitNMPCcanbesummarizedas follows: • Dramaticalreductionin onlinecomputations,since onlinenonlinear numerical optimizationisavoidedandreplacedbypiecewisefunctionevaluation.Thismay leadtosignificantreductionintherequirementstoreal-timeembeddedcomputer hardware. • NMPCoptimizationdependsonappropriateinitializationinordertoavoidlocal minima,andappropriateformulationofconstraintsinordertoavoidinfeasibility. Withexplicit NMPCthevalidationofinitializationproceduresandinfeasibility handlingcanbeconductedbasedonacompleteandexplicitsolution. • Significantreductioninonlinesoftwarecomplexitysincethecodeforpiecewise function evaluation is much simpler than a nonlinear numerical optimization solver. This may lead to formal software verification being a feasible practical tool. • Approximate explicit solutions with reduced complexity, and with guaranteed levels of sub-optimality, may be computed offline. Formal analysis of perfor- mance,sub-optimalityandstabilitymaybepossiblesinceanexplicitrepresenta- tionofthecontrollerisknown. • Formulationssuch as stochastic NMPC and robust NMPC may not lead to in- creasedonlinecomputationsinanexplicitNMPCapproach,comparedtoanom- inalNMPCformulation,althoughtheywillrequiremoreofflinecomputations. Maincontributionsofthebook Thisbookconsidersthemp-NLPapproachestoexplicitapproximateNMPCofcon- strainednonlinearsystems,developedbytheauthors,aswellastheirapplications tovariousNMPCproblemformulationsandseveralcasestudies.Theproposedmp- NLPmethodsarebasedonorthogonalpartitionofthestatespaceandtheyaregen- eralinsensethattheycanbeappliedtosolvebothconvexandnon-convexoptimiza- tionproblems.Thefollowingtypesof nonlinearsystemsare considered,resulting indifferentNMPCproblemformulations: • Nonlinear systems described by first-principles models and nonlinear systems describedbyblack-boxmodels; • Nonlinear systems with continuouscontrol inputs and nonlinear systems with quantizedcontrolinputs; • Nonlinearsystemswithoutuncertaintyandnonlinearsystemswithuncertainties (polyhedraldescriptionofuncertaintyandstochasticdescriptionofuncertainty); • Nonlinearsystems,consistingofinterconnectednonlinearsub-systems. Theproposedmp-NLPapproachestoexplicitsolutionofvariousNMPCproblems are illustrated with applicationsto several case studies, which present mathemati- cal models, NMPC formulations,mp-NLPcomputationalresults, and closed loop simulations. They are taken from diverse areas such as automotive mechatronics, compressorcontrol,combustionplantcontrol,reactorcontrol,pHmaintainingsys- temcontrol,cartandspringsystemcontrol,anddivingcomputers. Preface IX Intendedaudience The book is intended to support graduate courses and the study of Ph.D. and ad- vanced M.Sc. students in nonlinear control and optimization. Readers should be familiarwiththebasicsoflinearmodelpredictivecontrol,numericaloptimization methods,andlinearandnonlinearcontroltheory.Thebookcouldbealsousefulfor academic researchers working in the field of NMPC, as well as researchers from industrial companies, including automotive and aerospace, whose responsibilities includethedevelopmentofembeddedoptimalcontrolsystems. Bookorganization Thebookisstructuredasfollows: • InChapter1,basictheoryandalgorithmstofindanexplicitapproximatesolu- tionofmp-NLPproblems,basedonorthogonal(k−d tree) partitionofthe pa- rameterspace,aredescribedbyconsideringboththeconvexandthenon-convex case. Proceduresand heuristicrules forefficientsplitting of a regionin the pa- rameterspaceandforhandlingtheinfeasiblecasesareformulated. • InChapter2,themainaspectsofformulationoftheNMPCoptimizationprob- lemareconsidered,whichisanessentialpartofthecontroldesignandinvolves numerous decisions that are important for the control performance, feasibility, stability,androbustnessaswellasthecomputationalcomplexityandthenumer- icalchallengesofcomputingthesolution. • InChapter3,analgorithmforexplicitNMPC,whichlocallyapproximatesthe mp-NLPproblemwith a multi-parametricquadratic programis described. The approachisappliedtoacasestudy. • Chapter 4 considers the design of explicit NMPC controllers for several case studiesbyapplyingtheapproximatemp-NLPalgorithms,describedinChapter1. The case studies present mathematical models, NMPC formulations, mp-NLP computationalresults,andclosedloopsimulations.Theyaretakenfromdiverse areassuchasautomotivemechatronics,compressorcontrol,anddivingcomput- ers.Inthischapter,itisalsoshownthatboundingtheapproximationerrorofthe explicitapproximatesolutiontoconvexregulationNMPCproblemsensuresthe asymptoticstabilityofthesuboptimalclosed-loopsystem. • Chapter 5 presents an approximate multi-parametric Nonlinear Integer Pro- gramming (mp-NIP) approach to design explicit NMPC controllers for con- strainednonlinearsystemswithquantizedcontrolinputs.Theapproachisapplied totwocasestudies. • InChapter6,twoapproachestoexplicitmin-maxNMPCofconstrainednonlin- earsystemsinthepresenceofboundeddisturbancesand/orparameteruncertain- tiesareconsidered.Thefirstapproachisbasedonanopen-loopmin-maxNMPC problem statement, while the second approach adopts a closed-loop min-max NMPCformulation.Withthelatterapproach,conditionsforguaranteeingthel - 2 stabilityoftheclosed-loopsystemarederived.Twocasestudiesareconsidered. • InChapter7,twoapproachestoexplicit stochasticNMPCofconstrainednon- linear systems in the presence of disturbances and/or parameter uncertainties withknownprobabilitydistributionsarepresented.Thefirstapproachconstructs X Preface explicit approximateNMPCsolutionforsystems,describedbystochasticpara- metricmodels,whilethesecondapproachconsiderssystems,describedbyGaus- sianprocessmodels.Theapproachesareappliedtotwocasestudies. • Chapter 8 considers an approximate mp-NLP approach to explicit solution of output-feedback NMPC problems for constrained nonlinear systems described byneuralnetworkNARX models.A dual-modecontrolstrategyisproposedin ordertoachieveanoffset-freeclosed-loopresponseinthepresenceofbounded disturbancesand/ormodelerrors.Onecasestudyisconsidered. • InChapter9,asuboptimalapproachtodistributedNMPCforsystemsconsist- ingofnonlinearsubsystemswithlinearlycoupleddynamics,subjecttobothstate andinputconstraints,isconsidered.Theapproachisbasedentirelyondistributed on-lineoptimizationand canbe appliedto large-scalenonlinearsystems. Also, asemi-explicitNMPCapproachtoefficientlysolvethedistributedNMPCprob- lem forsmall- and medium-scalesystems is proposed.Both distributedNMPC approachesareappliedtoanexamplenonlinearsystem. AlexandraGrancharovahasbeenthemaincontributortoChapters1and4–9,and TorArneJohansenhasbeenthemaincontributortoChapters2and3. Sofia, AlexandraGrancharova Trondheim, TorArneJohansen January2012 Contents 1 Multi-parametricProgramming ................................ 1 1.1 Multi-parametricNonlinearProgramming..................... 1 1.1.1 ProblemFormulation................................ 2 1.1.2 OptimalityConditions ............................... 3 1.1.3 NonlinearProgrammingMethods ..................... 4 1.1.4 SensitivityResults .................................. 11 1.1.5 Algorithms for Approximate Multi-parametric NonlinearProgramming ............................. 12 1.2 ConvexMulti-parametricQuadraticProgramming .............. 24 1.2.1 ProblemFormulation................................ 24 1.2.2 OptimalityConditions ............................... 25 1.2.3 Algorithms for Exact Convex Multi-parametric QuadraticProgramming.............................. 27 1.2.4 RemarksonAlternativemp-QPAlgorithms ............. 31 1.3 EvaluatingPiecewiseFunctions.............................. 32 References.................................................... 34 2 NonlinearModelPredictiveControl............................. 39 2.1 Introduction .............................................. 39 2.2 NMPCOptimizationProblemFormulation .................... 41 2.2.1 Continuous-TimeModel,DiscretizationandFinite Parameterization.................................... 41 2.2.2 NumericalOptimalControl........................... 44 2.2.3 TuningandStability................................. 49 2.2.4 ExtensionsandVariationsoftheProblemFormulation .... 53 2.3 NumericalOptimization.................................... 57 2.3.1 ProblemStructure................................... 57 2.3.2 ComputationofJacobianandHessianmatrices .......... 60 2.4 MotivationforExplicitNonlinearModelPredictiveControl...... 61 References.................................................... 63 XII Contents 3 ExplicitNMPCUsingmp-QPApproximationsofmp-NLP......... 71 3.1 Introduction .............................................. 71 3.2 Localmp-QPApproximationtomp-NLP ..................... 73 3.3 Convexity................................................ 76 3.4 Algorithm................................................ 76 3.5 Example:CompressorSurgeControl ......................... 77 3.5.1 NMPCFormulation ................................. 77 3.5.2 TuningandSettings ................................. 79 3.5.3 Results............................................ 79 References.................................................... 84 4 ExplicitNMPCviaApproximatemp-NLP ....................... 87 4.1 Introduction .............................................. 87 4.2 FormulationoftheNMPCProblemasanmp-NLPProblem...... 88 4.3 StabilityofRegulationNMPC............................... 90 4.4 Application1:CompressorSurgeRegulation .................. 93 4.5 Application 2: Reference Tracking Control of an ElectropneumaticClutchActuatorUsingOn/OffValvesand Pulse-WidthModulation.................................... 97 4.5.1 MathematicalModeloftheClutchActuatorDynamics.... 98 4.5.2 DesignandPerformanceofExplicitReferenceTracking ControllerwithContinuousControlInput............... 103 4.6 Time-OptimalDiverDecompression ......................... 108 References.................................................... 108 5 ExplicitMPCofConstrainedNonlinearSystemswithQuantized Inputs ....................................................... 111 5.1 Introduction .............................................. 111 5.2 FormulationoftheQuantizedNMPCProblemasanmp-NIP Problem ................................................. 112 5.3 Approximatemp-NIPApproachtoExplicitQuantizedNMPC .... 114 5.3.1 ComputationofExplicitApproximateSolution .......... 114 5.3.2 EstimationofErrorBounds........................... 115 5.3.3 Approximatemp-NIPAlgorithm ...................... 115 5.4 Application1:ReferenceTrackingQuantizedControlofan ElectropneumaticClutchActuatorUsingOn/OffValves ......... 116 5.4.1 DesignofExplicitNMPCwithQuantizedControl Input.............................................. 117 5.4.2 Comparison between the Explicit NMPC with QuantizedControlInputandtheExplicitNMPCwith ContinuousControlInput ............................ 118 5.5 Application2:RegulationofaContinuousStirredTankReactor withQuantizedControlInput................................ 120 References.................................................... 125

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.