ebook img

Explanation and Prediction: An Architecture for Default and Abductive Reasoning PDF

40 Pages·2007·0.27 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Explanation and Prediction: An Architecture for Default and Abductive Reasoning

Explanation and Prediction(cid:0) An Architecture for Default and Abductive Reasoning David Poole Department of Computer Science(cid:0) The University of British Columbia(cid:0) Vancouver(cid:0) B(cid:1)C(cid:1)(cid:0) Canada V(cid:2)T (cid:3)W(cid:4) (cid:5)(cid:2)(cid:6)(cid:7)(cid:8) (cid:9)(cid:9)(cid:10) (cid:2)(cid:9)(cid:4)(cid:7) poole(cid:11)cs(cid:1)ubc(cid:1)ca September (cid:3)(cid:4)(cid:0) (cid:3)(cid:12)(cid:12)(cid:13) Abstract Although there are many arguments that logic is an appropriate tool forarti(cid:0)cial intelligence(cid:1) there hasbeen a perceived problem with the monotonicity of classical logic(cid:2) This paper elaborates on the idea that reasoning should be viewed as theory formation where logic tells us the consequences of our assumptions(cid:2) The two activities of pre(cid:3) dicting what is expected to be true and explaining observations are considered inasimple theoryformationframework(cid:2) Propertiesofeach activity are discussed(cid:1) along with a number of proposals as to what should be predicted or accepted as reasonable explanations(cid:2) An ar(cid:3) chitecture is proposed tocombine explanation and prediction into one coherentframework(cid:2) Algorithmsused toimplement thesystemaswell as examples from a running implementation are given(cid:2) Key words(cid:4) defaults(cid:1) conjectures(cid:1) explanation(cid:1) prediction(cid:1) abduc(cid:3) tion(cid:1) dialectics(cid:1) logic(cid:1) nonmonotonicity(cid:1) theory formation (cid:0) Explanation and Prediction (cid:1) (cid:0) Introduction One way to do research in Arti(cid:2)cial Intelligence is to argue that we need a certain number of tools and to augment these only when they have proven inadequate for some task(cid:3) In this way we can argue we need at least the (cid:2)rst order predicate calculus to reason about individuals and relations among individuals (cid:4)given that we want to indirectly describe individuals(cid:5) as well as describe the conjunction(cid:5) disjunction and negation of relations(cid:6) (cid:7)Hayes(cid:8)(cid:8)(cid:5) Moore(cid:9)(cid:1)(cid:5) Genesereth(cid:9)(cid:8)(cid:10)(cid:3) Non(cid:11)monotonicity has often been cited as a problem with using logic as a basis for commonsense reasoning(cid:3) In (cid:7)PGA(cid:9)(cid:8)(cid:10) it was argued that instead of deduction from our knowledge(cid:5) reasoning should be viewed as a process of theory formation(cid:3) In (cid:7)Poole(cid:9)(cid:9)a(cid:10) it was shown how default reasoning can be viewed in this way by treating defaults as possible hypotheses that can be used in an explanation(cid:3) It has also been recognised (cid:4)e(cid:3)g(cid:3)(cid:5)(cid:7)Charniak(cid:9)(cid:12)(cid:5) PGA(cid:9)(cid:8)(cid:5) Cox(cid:9)(cid:8)(cid:5)Reggia(cid:9)(cid:13)(cid:10)(cid:6) that abduction is an appropriate way to view diagnostic and recognition tasks(cid:3) In diagnosis(cid:5) for example(cid:5) the diseases and malfunctions are the pos(cid:11) sible hypotheses that can be used to explain some observations(cid:3) We can argue we want to use logic and do hypothetical reasoning(cid:3) This research considers the simplest form of hypothetical reasoning(cid:5) namely the case where the user provides a set of possible hypotheses they are prepared to accept as part of a theory(cid:3) This is the framework of the Theorist system (cid:7)Poole(cid:9)(cid:9)a(cid:5) PGA(cid:9)(cid:8)(cid:10)(cid:3) The distinctions outlined in this paper were found from experience by using the system(cid:5) explaining to others how to use the system and in building applications (cid:7)Poole(cid:9)(cid:8)b(cid:10)(cid:3) (cid:0)(cid:1)(cid:0) Theorist Framework We assume we are given a standard (cid:2)rst order language over a countable alphabet (cid:7)Enderton(cid:8)(cid:1)(cid:10)(cid:3) By a formula we mean a well formed formula in this language(cid:3) By an instance of a formula we mean a substitution of terms in this language for free variables in the formula(cid:3) In this paper the Prolog convention of variables starting with an upper case letter is used(cid:3) The framework (cid:7)Poole(cid:9)(cid:9)a(cid:10) is de(cid:2)ned in terms of two sets of formulae(cid:14) A is a set of closed formulae which we are taking as given(cid:5) and Explanation and Prediction (cid:13) H is a set of (cid:4)possibly open(cid:6) formulae which we take as the (cid:15)possible hy(cid:11) potheses(cid:16)(cid:3) De(cid:0)nition (cid:1)(cid:2)(cid:1) A scenario of (cid:4)A(cid:0)H(cid:6) is a set D of ground instances of elements of H such that D (cid:0)A is consistent(cid:0) A scenario is a set of hypotheses that could be true based on what we are given(cid:3) De(cid:0)nition (cid:1)(cid:2)(cid:3) If g is a closed formula(cid:1) an explanation of g from (cid:4)A(cid:0)H(cid:6) is a scenario of (cid:4)A(cid:0)H(cid:6) which (cid:2)together with A(cid:3) implies g(cid:0) ThusD isan explanationof g from(cid:4)A(cid:0)H(cid:6)ifD isa setofground instances of elements of H such that D (cid:0)A is consistent and D (cid:0)A j(cid:17) g(cid:3) De(cid:0)nition (cid:1)(cid:2)(cid:4) An extension of (cid:4)A(cid:0)H(cid:6) is the set of logical consequences of A together with a maximal (cid:2)with respect to set inclusion(cid:3) scenario of (cid:4)A(cid:0)H(cid:6)(cid:0) The following theorem was proved in (cid:7)Poole(cid:9)(cid:9)a(cid:10) and follows from the compactness theorem of the (cid:2)rst order predicate calculus (cid:7)Enderton(cid:8)(cid:1)(cid:10)(cid:3) Theorem (cid:1)(cid:2)(cid:5) There is an explanation of g from A(cid:0)H i(cid:4) g is in some ex(cid:5) tension of A(cid:0)H(cid:0) In (cid:7)Poole(cid:9)(cid:9)a(cid:10) it was shown that (cid:1) (cid:1) H corresponds exactly to the normal default (cid:14) (cid:1)(cid:2)(cid:1) of (cid:7)Reiter(cid:9)(cid:18)(cid:10)(cid:3) It was also argued that the extra power of Reiter(cid:19)s defaults was not needed(cid:3) Both (cid:7)Reiter(cid:9)(cid:18)(cid:10) and (cid:7)Poole(cid:9)(cid:9)a(cid:10) showed how their systems can be used for default reasoning(cid:5) but not what such reasoning was for(cid:3) (cid:0)(cid:1)(cid:2) Explanation and Prediction There are two activities we will consider(cid:5) namely explaining observations and predicting what is expected to be true(cid:3) These are both considered to be instances of the Theorist framework(cid:3) Imaketheassumptionthat wedo notneedmorethantheTheoristframe(cid:11) work(cid:3) This may turn out to be incorrect(cid:5) but if it is(cid:5) we will have found a good reason to add extra features to our system(cid:3) I make no a priori as(cid:11) sumption that the same hypotheses should be used both for explanation and Explanation and Prediction (cid:20) prediction(cid:21) in fact there are good reasons for not making them the same(cid:3) If we later (cid:2)nd out they coincide(cid:5) again we will have learnt something(cid:3) (cid:0) As such(cid:5) the following sets of formulae are provided by the user(cid:14) F is the set of facts(cid:5) which are taken as being true of the domain(cid:21) (cid:22) is the set of defaults(cid:5) possible hypotheses which can be used in prediction(cid:21) (cid:23) is the setof conjectures(cid:5) possibly hypotheses whichcan be used in explain(cid:11) ing observations(cid:21) O is the set of observations that have been made about the actual world(cid:3) (cid:1) Prediction A problem many people in AI have been working on is the problem of pre(cid:11) dicting what one expects to be true in some (cid:4)real or imaginary(cid:6) world based on the information one has about that world(cid:3) The most conservative form of prediction is logical consequence from our knowledge(cid:3) If axioms A are true in some world(cid:5) any logical consequence of A must also be true in that world(cid:3) This is the essence of classical logic(cid:3) Many people have argued that such a notion is too weak for common sense prediction(cid:21) sometimes we want to make assumptions as to what we expectto be true(cid:3) This is the basis of muchwork on nonmonotonic reasoning (cid:7)Bobrow(cid:9)(cid:18)(cid:10)(cid:3) We consider defaults as assumptions one is prepared to make about the world(cid:5) unless they can be shown to be wrong(cid:3) In the Theorist framework(cid:5) defaults are possible hypotheses used for prediction (cid:7)Poole(cid:9)(cid:9)a(cid:10)(cid:3) What should be predicted based on such hypothetical reasoning seems to be uncontroversial if there are no con(cid:24)icting defaults (cid:4)i(cid:3)e(cid:3)(cid:5) there is only one extension(cid:6)(cid:3) In this section(cid:5) we discuss what should be predicted when there are con(cid:24)icting defaults(cid:3) We assume there is no other information on which to base our decision (cid:4)e(cid:3)g(cid:3)(cid:5) speci(cid:2)city (cid:7)Poole(cid:9)(cid:12)(cid:10)(cid:5) probability (cid:7)Neufeld(cid:9)(cid:8)(cid:10)(cid:5) temporal considerations (cid:7)Goebel(cid:9)(cid:8)(cid:10)(cid:6)(cid:3) (cid:0) As far as the preceding semantics are given(cid:0) the possible hypotheses(cid:0) H(cid:0) willin some cases be (cid:1) and in some cases (cid:2)(cid:0)(cid:1)(cid:3) the given A will sometimes be F and sometimesF together with an explanation of the observations(cid:4) Explanation and Prediction (cid:12) (cid:1) Example (cid:3)(cid:2)(cid:1) Consider the following example H (cid:17) f republican(cid:4)X(cid:6) (cid:2) hawk(cid:4)X(cid:6)(cid:0) quaker(cid:4)X(cid:6) (cid:2) dove(cid:4)X(cid:6)(cid:0) hawk(cid:4)X(cid:6) (cid:2) support(cid:5)star(cid:5)wars(cid:4)X(cid:6)(cid:0) hawk(cid:4)X(cid:6) (cid:2) politically(cid:5)motivated(cid:4)X(cid:6)(cid:0) dove(cid:4)X(cid:6) (cid:2) politically(cid:5)motivated(cid:4)X(cid:6) quaker(cid:4)X(cid:6) (cid:2) religious(cid:4)X(cid:6)g F (cid:17) f (cid:3)X (cid:4)(cid:4)dove(cid:4)X(cid:6)(cid:5)hawk(cid:4)X(cid:6)(cid:6)(cid:0) quaker(cid:4)dick(cid:6)(cid:0) republican(cid:4)dick(cid:6) g Based on the above facts and defaults(cid:5) there are questions as to which of the following should be predicted(cid:14) dove(cid:4)dick(cid:6) hawk(cid:4)dick(cid:6) dove(cid:4)dick(cid:6)(cid:6)hawk(cid:4)dick(cid:6) dove(cid:4)dick(cid:6)(cid:5)hawk(cid:4)dick(cid:6) support(cid:5)star(cid:5)wars(cid:4)dick(cid:6) politically(cid:5)motivated(cid:4)dick(cid:6) religious(cid:4)dick(cid:6) The rest of this section discusses four proposals of what should be pre(cid:11) dicted(cid:3) There are based on the answers to the following question(cid:14) If we have an explanation for p and and an explanation for q(cid:5) but we know both cannot be true (cid:4)i(cid:3)e(cid:3)(cid:5) F j(cid:17) (cid:4)(cid:4)p(cid:5)q(cid:6)(cid:6)(cid:5) what should we predict(cid:25) (cid:0)(cid:3) Either p or q but not both(cid:3) (cid:1)(cid:3) Neither p nor q(cid:3) (cid:13)(cid:3) p(cid:6)q(cid:3) (cid:20)(cid:3) Nothing(cid:21) we have detected an inconsistency in our knowledge base(cid:3) The following sections consider the consequences of each choice(cid:3) (cid:1) ThisexampleisbasedonanexamplebyMattGinsberg(cid:0)whichisbasedonanexample of Ray Reiter(cid:4) Explanation and Prediction (cid:26) (cid:2)(cid:1)(cid:0) Predict if explainable The (cid:2)rst de(cid:2)nition of prediction where we predict p or predict q corresponds (cid:2) to predictingwhateverisexplainable(cid:4)predictingwhat isin someextension (cid:6)(cid:3) In example (cid:1)(cid:3)(cid:0)(cid:5) we would predict either politically(cid:5)motivated(cid:4)dick(cid:6)(cid:5)hawk(cid:4)dick(cid:6)(cid:5)supports(cid:5)star(cid:5)wars(cid:4)dick(cid:6) or politically(cid:5)motivated(cid:4)dick(cid:6)(cid:5)dove(cid:4)dick(cid:6) but not both(cid:3) This can be claimed to be reasonable because we were told we could assume Dick is a hawk given no evidence to the contrary (cid:4)the only evidencetothecontrarybeinganinternalinconsistency(cid:6)(cid:5)andsocanconclude he is politically motivated and supports star wars(cid:3) We can also assume he is a dove and so is politically motivated(cid:3) We just cannot assume he is both a dove and hawk(cid:5) as this is inconsistent(cid:3) This has the peculiar property that we both predict hawk(cid:4)dick(cid:6) and predict (cid:4)hawk(cid:4)dick(cid:6) (cid:4)although in di(cid:27)erent extensions(cid:6)(cid:3) The following shows this turns out to be general(cid:3) Theorem (cid:3)(cid:2)(cid:3) There are multiple extensions if and only if there is some (cid:3) such that (cid:3) is explainable and (cid:4)(cid:3) is explainable(cid:0) Proof(cid:6) Suppose there are two extensions(cid:5) E(cid:0) and E(cid:1)(cid:3) Di(cid:27)erent extensionsaremutuallyinconsistent(cid:5)soF(cid:0)E(cid:0)(cid:0)E(cid:1) isinconsistent(cid:3) By the compactness of the (cid:2)rst order predicate calculus(cid:5) there are (cid:2)nite subsets D(cid:0) and D(cid:1) of E(cid:0) and E(cid:1) respectively such that F (cid:0)D(cid:0)(cid:0)D(cid:1) is inconsistent(cid:3) D(cid:0) is such an (cid:3) as D(cid:0) is in extension E(cid:0) and (cid:4)D(cid:0) is in E(cid:1) (cid:4)as F (cid:0)D(cid:1) j(cid:17) (cid:4)D(cid:0)(cid:6)(cid:3) Conversely(cid:5) suppose (cid:3) is explained by D(cid:0) and (cid:4)(cid:3) is explained by D(cid:1)(cid:3) Extend D(cid:0) to extension E(cid:0) and D(cid:1) to E(cid:1)(cid:3) E(cid:0) and E(cid:1) are mutually inconsistent(cid:5) and so are di(cid:27)erent(cid:3) Thus there are (cid:0) multiple extensions(cid:3) As it seems wrong to both predict (cid:3) and predict (cid:4)(cid:3)(cid:5) membership in an extension seems like a strange notion of prediction(cid:3) It corresponds more to (cid:15)may be true(cid:16) than to prediction(cid:3) (cid:2) (cid:5)Reiter(cid:6)(cid:7)(cid:8) uses membership in one extension(cid:0) but does not claim that he is formal(cid:9) ising prediction(cid:0) but rather (cid:10)an acceptable set of beliefs that one may hold about an incompletelyspeci(cid:11)ed world(cid:12) (cid:5)Reiter(cid:6)(cid:7)(cid:0) p(cid:4) (cid:6)(cid:6)(cid:8)(cid:4) Explanation and Prediction (cid:8) (cid:2)(cid:1)(cid:2) Incontestable Scenarios When both p and q can be explained(cid:5)but are mutuallyinconsistent(cid:5) it seems reasonable to predict neither(cid:21) we were told we could assume p given no evidence to the contrary(cid:5) but q is evidence to the contrary(cid:5) so we should not assume p(cid:3) This notion of prediction(cid:5) corresponds to predicting what can be ex(cid:11) plained using an (cid:15)incontestable scenario(cid:16)(cid:3) This is a very sceptical form of prediction where we predict some goal only if we have an argument why the goal should be true (cid:4)i(cid:3)e(cid:3)(cid:5) the goal in explainable(cid:6) and we cannot (cid:2)nd an argument why the argument for the goal should not be true(cid:3) In example (cid:1)(cid:3)(cid:0)(cid:5) of the conclusions suggested only religious(cid:4)dick(cid:6) is pre(cid:11) dicted(cid:3) We can(cid:19)t assume he is hawk since(cid:5) as far as we know(cid:5) he could be a dove(cid:5) and we can(cid:19)t assume he is a dove(cid:5) as he may as well be hawk (cid:4)and he can(cid:19)t be both(cid:6)(cid:5) so nothing that depends on these is predicted(cid:3) De(cid:0)nition (cid:3)(cid:2)(cid:4) Scenario D of (cid:4)F(cid:0)(cid:22)(cid:6) is an incontestable scenario if (cid:4)D is not explainable from (cid:4)F(cid:0)(cid:22)(cid:6)(cid:3) The following lemma shows that being in an incontestable scenario is a local property of instances of defaults and does not depend on other defaults in an explanation(cid:3) Lemma (cid:3)(cid:2)(cid:5) Scenario D of (cid:4)F(cid:0)(cid:22)(cid:6) is an incontestable scenario i(cid:4) for all d (cid:1) D(cid:1) (cid:4)d is not explainable from (cid:4)F(cid:0)(cid:22)(cid:6)(cid:0) Proof(cid:6) Scenario S explains (cid:4)D i(cid:27) there is someminimalsubset (cid:0) (cid:0) D of D such that F (cid:0)S j(cid:17) (cid:4)D (cid:3) (cid:0) The lemma follows from noticing that if D (cid:17) fd(cid:0)(cid:0)(cid:4)(cid:4)(cid:4)(cid:0)dng(cid:5) F (cid:0)S j(cid:17) (cid:4)(cid:4)d(cid:0) (cid:5)(cid:4)(cid:4)(cid:4)(cid:5)dn(cid:6) i(cid:27) F (cid:0)S (cid:0)fd(cid:0)(cid:0)(cid:4)(cid:4)(cid:4)(cid:0)dn(cid:1)(cid:0)g j(cid:17) (cid:4)dn and the left hand side of each formula is consistent (cid:4)by the mini(cid:11) (cid:0) (cid:0) mality of D (cid:6)(cid:3) Explanation and Prediction (cid:9) Thus being part of an incontestable scenario is a local property of in(cid:11) stances of defaults and so there is a unique incontestable extension(cid:5) de(cid:2)ned as(cid:14) Corollary (cid:3)(cid:2)(cid:7) g is incontestably explainable from (cid:4)F(cid:0)(cid:22)(cid:6) i(cid:27) g logically fol(cid:11) lows from F (cid:0)D where D (cid:17) fd (cid:14) d is a ground instance of an element of (cid:22) and (cid:4)d is not explainable from (cid:4)F(cid:0)(cid:22)(cid:6)g For the ground case(cid:5) if we can explain the negation of a default(cid:5) it can be removed at compile time(cid:3) A new knowledge base can be built by removing any default from (cid:22) for which we can explain its negation (cid:4)from F and the initial (cid:22)(cid:6)(cid:5) and then computing logical consequences of the facts and the remaining defaults (cid:4)i(cid:3)e(cid:3)(cid:5) those for which we cannot explain their negations(cid:6)(cid:3) Forthenon(cid:11)ground case(cid:5)however(cid:5)thisdoesnotworkaswecannot remove a default just because the negation of some instance of it is explainable(cid:3) In this case the set D may be in(cid:2)nite(cid:5) however we can still check explainability dynamically(cid:3) (cid:2)(cid:1)(cid:3) Membership in all Extensions The third response to the question posed in section (cid:1) was to predict the disjunction p(cid:6)q(cid:3) We do not predict something if we can just explain it(cid:5) as we may be able to explain it and its negation(cid:3) It seems wrong to both predict some proposition and also predict its negation(cid:3) It is also not adequate to predict some proposition because we can explain it and cannot explain its negation(cid:3) Consider an example where we can explain a and can also explain (cid:4)a(cid:3) We do not want to predict a is true(cid:3) Suppose the only rule about g is a (cid:2) g(cid:21) if we can(cid:19)t predict a(cid:5) we do not want to predict g(cid:5) even though there is no way to explain (cid:4)g(cid:3) Such considerations lead to the idea of predicting what is in every extension (cid:4)or(cid:5) equivalently what logically follows from the disjunction of the maximal scenarios(cid:6)(cid:3) Inthissectionwediscussdi(cid:27)erentproperties ofsuchprediction(cid:21)insection (cid:12)(cid:3)(cid:1) we show how it can be implemented(cid:3) In example (cid:1)(cid:3)(cid:0)(cid:5) we predict religious(cid:4)dick(cid:6)(cid:5)politically(cid:5)motivated(cid:4)dick(cid:6)(cid:5) (cid:4)(cid:4)hawk(cid:4)dick(cid:6)(cid:5)supports(cid:5)star(cid:5)wars(cid:4)dick(cid:6)(cid:6)(cid:6)dove(cid:4)dick(cid:6)(cid:6) Explanation and Prediction (cid:28) This is the formula which is in all extensions (cid:4)together with the facts(cid:5) it is equivalent to the disjunction of the extensions(cid:6)(cid:3) Whichever extension is true in a world(cid:5) this formula will be true in that world(cid:3) The following theorem gives a characterisation of membership in all ex(cid:11) tensions(cid:14) Theorem (cid:3)(cid:2)(cid:8) The following are equivalent(cid:6) (cid:7)(cid:0) g is in every extension of (cid:4)A(cid:0)H(cid:6)(cid:0) (cid:8)(cid:0) for all scenarios S of (cid:4)A(cid:0)H(cid:6)(cid:1) there is an explanation of g from (cid:4)A (cid:0) S(cid:0)H(cid:6)(cid:0) (cid:9)(cid:0) there does not exist a scenario S of (cid:4)A(cid:0)H(cid:6) such that there is no expla(cid:5) nation of g from (cid:4)A(cid:0)S(cid:0)H(cid:6)(cid:0) (cid:10)(cid:0) there is a set E of (cid:2)(cid:11)nite(cid:3) explanations of g from (cid:4)A(cid:0)H(cid:6) such that there is no scenario S of (cid:4)A(cid:0)H(cid:6) inconsistent with every element of E(cid:0) (cid:12)(cid:0) there is an explanation D of g(cid:1) and if there exists d (cid:1) D such that (cid:4)d is explainable by E(cid:1) then g is in every extension of (cid:4)A(cid:0)E(cid:0)H(cid:6)(cid:0) Proof(cid:6) (cid:1) (cid:2) (cid:0)(cid:3) If g is explainable from all scenarios(cid:5) it is explainable from all maximal scenarios(cid:5) that is it is in every ex(cid:11) tension(cid:3) (cid:1) (cid:7) (cid:13)(cid:3) These are rewritings of the same statement(cid:3) (cid:20) (cid:2) (cid:1)(cid:3) Suppose (cid:20) holds(cid:5) and there is a scenario S from which g is not explainable(cid:3) Each E (cid:1) E is inconsistent with S (cid:4)otherwise E (cid:0)S is an explanation of g from (cid:4)A(cid:0)S(cid:0)H(cid:6)(cid:6)(cid:3) (cid:0) (cid:2) (cid:20)(cid:3) Suppose (cid:0) holds(cid:3) The set of all maximal scenarios has the property given in (cid:20) (cid:4)except the (cid:2)nite membership(cid:6)(cid:3) By the compactness theorem of the (cid:2)rst order predicate calculus (cid:7)Enderton(cid:8)(cid:1)(cid:10) there is a set E composed of (cid:2)nite subsets of the maximal scenarios which imply g(cid:3) If some S were inconsistent with all elements of E it would be inconsistent with the maximal scenarios(cid:5) and we know such an S cannot exist(cid:3) So E is a set which satis(cid:2)es (cid:20)(cid:3) Explanation and Prediction (cid:0)(cid:18) (cid:20) (cid:2) (cid:12)(cid:3) Suppose (cid:20) holds(cid:5) the set E iscountable (cid:4)as itis a subset of the set of (cid:2)nite strings in a language with countable generators(cid:6)(cid:3) Let D be the minimumelementof E according to some ordering(cid:3) We know A(cid:5)D j(cid:17) g(cid:3) As g is in every extension of A(cid:0)H it is in every extension of A(cid:5)E(cid:0)H(cid:3) (cid:12) (cid:2) (cid:1)(cid:3) Suppose (cid:12) holds and there is some scenario S such that g is not explainable from S(cid:3) D is inconsistent with S (cid:4)otherwise S (cid:0)D is an scenario of S(cid:0)H which explains g(cid:6)(cid:5) so there is some (cid:0) (cid:0) (cid:0) d (cid:1) D which follows from consistent S (cid:17) S (cid:0)D where D (cid:8) D (cid:0) andsoby(cid:12)(cid:5) g isineveryextensionofS (cid:5)andsoisinoneextension (cid:0) (cid:0) of S (cid:5) a contradiction to g not being explainable from S(cid:3) This theorem shows that membership in all extensions is also a sceptical theory of prediction(cid:3) When predicting what is in all extensions(cid:5) we can think of starting with all explainable propositions(cid:3) We eliminate a proposition if its negation can be explained(cid:5) or if its derivation rests on removedpropositions(cid:3) Suppose (cid:3) is explainable(cid:21) if (cid:4)(cid:3) is explainable (cid:4)by scenario S(cid:6)(cid:5) (cid:3) is not in every extension(cid:3) If (cid:5) was derived from (cid:3)(cid:5) to be in all extensions (cid:5) must be explainable from S (cid:3) Theorem (cid:1)(cid:3)(cid:26) tells us that if g is not in every extension of A(cid:0)(cid:22)(cid:5) there is some scenario S of A(cid:0)(cid:22)(cid:5) such that g is not explainable from S(cid:0)(cid:22)(cid:3) Based on defaultsbeing normalityconditions(cid:4)i(cid:3)e(cid:3)(cid:5)conditions that weexpectto betrue given no evidence to the contrary(cid:6) we cannot rule out S(cid:5) and so we should not predict g(cid:3) The di(cid:27)erencebetween predictingwhat is in allextensions and predicting what is incontestably explainable(cid:5) is that the latter requires one explanation of the goal which is consistent with all scenarios(cid:5) whereas the former allows a set of explanations of the goal which must be consistent with all scenarios(cid:3) Example (cid:3)(cid:2)(cid:9) Suppose we are using the default reasoning system for recog(cid:11) nition(cid:3) Suppose also that wecan explainPollybeing an emuand also explain Polly being an ostrich(cid:3) It cannot be both an emu and an ostrich(cid:3) H (cid:17) f feathered(cid:4)X(cid:6)(cid:5)big(cid:4)X(cid:6)(cid:5)runs(cid:4)X(cid:6) (cid:2) emu(cid:4)X(cid:6)(cid:0) feathered(cid:4)X(cid:6)(cid:5)big(cid:4)X(cid:6)(cid:5)runs(cid:4)X(cid:6) (cid:2) ostrich(cid:4)X(cid:6)g F (cid:17) f (cid:3)X (cid:4)(cid:4)emu(cid:4)X(cid:6)(cid:5)ostrich(cid:4)X(cid:6)(cid:6)

Description:
Architecture for Default and Abductive. Reasoning and in building applications Poole87b]. F f8d )wg E. So E is an explanation of O from F f8d ) . Quine78] W. V. Quine, and J. S. Ullian, The Web of Belief, Random House,.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.