Conference Proceedings of the Society for Experimental Mechanics Series James De Clerck Editor Experimental Techniques, Rotating Machinery, and Acoustics, Volume 8 Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, 2015 Conference Proceedings of the Society for Experimental Mechanics Series SeriesEditor TomProulx SocietyforExperimentalMechanics,Inc., Bethel,CT,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/8922 James De Clerck Editor Experimental Techniques, Rotating Machinery, and Acoustics, Volume 8 Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, 2015 123 Editor JamesDeClerck TheEnterpriseProgram MichiganTechnologicalUniversity Houghton,MS,USA ISSN2191-5644 ISSN2191-5652 (electronic) ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries ISBN978-3-319-15235-6 ISBN978-3-319-15236-3 (eBook) DOI10.1007/978-3-319-15236-3 LibraryofCongressControlNumber:2015935738 SpringerChamHeidelbergNewYorkDordrechtLondon ©TheSocietyforExperimentalMechanics,Inc.2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherights oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting, reproduction onmicrofilms orinany other physical way, and transmission or informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateof publication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia(www.springer.com) Preface ExperimentalTechniques,RotatingMachinery&Acoustics,representsoneoftenvolumesoftechnicalpaperspresentedatthe 33rdIMAC,AConferenceandExpositiononStructuralDynamics,2015organizedbytheSocietyforExperimentalMechan- ics, andheldin Orlando,FloridaFebruary2–5,2015.Thefullproceedingsalso includevolumeson NonlinearDynamics; DynamicsofCivilStructures;ModelValidationandUncertaintyQuantification;SensorsandInstrumentation;SpecialTopics inStructuralDynamics;StructuralHealthMonitoring&DamageDetection;Shock&VibrationAircraft/Aerospace,Energy Harvesting;andTopicsinModalAnalysis. Each collection presents early findings from experimental and computational investigations on an important area within Structural Dynamics. Topics in Modal Analysis I represents papers on enabling technologies for Modal Analysis measurementssuchasSensors&Instrumentation,andapplicationsofModalAnalysisinspecificapplicationareas.Topics inthisvolumeinclude: ExperimentalTechniques ProcessingModalData RotatingMachinery Acoustics AdaptiveStructures Biodynamics Damping Theorganizerswouldliketothanktheauthors,presenters,sessionorganizers,andsessionchairsfortheirparticipationin thistrack. Houghton,MS,USA J.DeClerck v Contents 1 AComputationalModeltoInvestigatetheInfluenceofSpacingErrorsonSpurGearPairDynamics....... 1 MuratInalpolat 2 DrillVibrationSuppressionThroughPhase-LockedLoopControl............................................... 11 NicholasMartinez,JermaineChambers,MichelleGegel,EricSchmierer,andAlexScheinker 3 TowardstheSelectionofBalancingPlanestoAttainLowVibrationsinFlexibleRotorMotorSystems...... 21 SumitSinghalandKumarVikramSingh 4 ExperimentalAcousticModalAnalysisofanAutomotiveCabin.................................................. 33 G.Accardo,M.El-kafafy,B.Peeters,F.Bianciardi,D.Brandolisio,K.Janssens,andM.Martarelli 5 UncorrelatedNoiseSourcesSeparationUsingInverseBeamforming............................................. 59 ClaudioColangeli,PaoloChiariotti,andKarlJanssens 6 ActiveNoiseControlExperimentMinimisingRadiation ofActiveEnergy ......................................................................................................... 71 UliKrauseandDelfSachau 7 ActiveControlofTransformerNoisebyMIMOAlgorithm........................................................ 77 J.M.LiuandW.D.Zhu 8 NumericalPredictionToolsforLow-FrequencySoundInsulationinLightweightBuildings .................. 85 JuanNegreiraandDelphineBard 9 ReductionofRadiatingSoundfromCFRPLaminatedPlateswithOrthotropy................................. 97 NobuyukiOkubo,YukiIzumi,TakeshiToi,HideyukiMuramatsu,andYujiNaito 10 RotatingDiscModelforComplexEigenvalueAnalysisofBrakeSqueal ......................................... 107 YujianWang,YongchangDu,andPuGao 11 ValidationofClosed-LoopCouplingDiscBrakeModel forSquealAnalysis...................................................................................................... 113 PuGao,YongchangDu,andYujianWang 12 EstimationofTorsionalCompliance(Stiffness)fromFree-FreeFRFMeasurements:eRCFTheory......... 121 HasanG.Pasha,RandallJ.Allemang,AllynW.Phillips,AlexanderYoung,andJeffPoland 13 AnEstimationofTorsionalCompliance(Stiffness)fromFree-FreeFRF Measurements:eRCFApplication..................................................................................... 133 JeffreyPoland,AlexanderYoung,HasanPasha,RandallAllemang,andAllynPhillips 14 EstimationofBendingCompliance(Stiffness)fromFree-FreeFRFMeasurements:eBCFTheory........... 141 HasanG.Pasha,R.J.Allemang,A.W.Phillips,A.Young,andJ.Poland 15 In-SituExperimentalModalAnalysisofaDirect-DriveWind TurbineGenerator....................................................................................................... 157 M.Kirschneck,D.J.Rixen,HenkPolinder,andRonvanOstayen vii viii Contents 16 EffectofRadialConfinementonWavePropagationandVibrationalResponseinBars........................ 167 JacobC.Dodson,JasonR.Foley,JanetC.Wolfson,JonathanHong,VincentLuk,AlainBeliveau, andAlexanderIdesman 17 ComponentQualificationUsing3DLaserVibrometryandTransmissibilityModels ........................... 181 D.J.MacknellyandP.R.Ind 18 ExploitingContinuousScanningLaserDopplerVibrometryandWaveletProcessing forDamageDetection................................................................................................... 189 P.Chiariotti,G.M.Revel,andM.Martarelli 19 Useof3DScanningLaserVibrometerforFullFieldStrainMeasurements...................................... 197 JesusM.ReyesandPeterAvitabile 20 InlineMeasurementsofRailBendingandTorsionThroughaPortableDevice.................................. 211 S.Bionda,F.Braghin,D.Milani,andE.Sabbioni 21 FortyYearsofUseandAbuseofImpactTesting:APracticalGuideto MakingGoodFRFMeasurements .................................................................................... 221 DavidL.Brown,RandallJ.Allemang,andAllynW.Phillips 22 DetectionofCouplingMisalignmentbyExtendedOrbits .......................................................... 243 MichaelMonte,FlorianVerbelen,andBramVervisch 23 LinearandNonlinearResponseofaRectangularPlateMeasuredwithContinuous-ScanLaser DopplerVibrometryand3D-DigitalImageCorrelation............................................................ 251 DavidA.Ehrhardt,ShifeiYang,TimothyJ.Beberniss,andMatthewS.Allen 24 VibrationEventLocalizationinanInstrumentedBuilding ........................................................ 265 JavierSchloemann,V.V.N.SriramMalladi,AmericoG.Woolard,JosephM.Hamilton, R.MichaelBuehrer,andPabloA.Tarazaga 25 LoadingEffectonInductionMotorEccentricityDiagnosticsUsingVibrationandMotorCurrent........... 273 GaneriwalaSuri Chapter 1 A Computational Model to Investigate the Influence of Spacing Errors on Spur Gear Pair Dynamics MuratInalpolat Abstract In this paper, a computational model is developed to investigate the influence of tooth spacing errors on the dynamicsof spur gear pairs. This finite element based computationalmodelimplicitly includes periodically-timevarying gear mesh stiffness and nonlinearitiescaused by tooth separationsin resonanceregions. The modelcan simulate the long periodtransmissionerrorinduceddynamicresponsefromaspurgearwithdifferentspacingerrorpatternsandpredictsboth timedomainhistoriesandfrequency-domainspectraofdynamicmeshforceanddynamictransmissionerror.Thedynamic responsesduetobothdeterministicandrandomteethspacingerrorsarepredictedandcomparedtothepreviouslygenerated results from a lumped parameter model capable of utilizing experimentally measured transmission error as the realistic excitationmechanism.Thisstudyalsoenablescreationofanextensivedatabaseofdynamicresponsespectraofgearpairs undertheinfluenceofspacingerrorsthatwilllaterbeutilizedforinvestigatingthediagnosticsofgearpairs. Keywords Spacingerrors • Dynamics • Nonlineareffects • Contact • Manufacturing 1.1 Introduction Gearmanufacturingconstitutesthedecisionandimpositionofacertainqualitylevel.Theimposedqualitylevelisspecified basedupontherequirementsoftheapplicationandeventhegearswiththehighestqualitylevelswillhavecertainamountof manufacturingerrors(tolerances).Thesemanufacturingerrorsandtolerancescontributetotheloadedtransmissionerrorthat affectsthemeshingdynamicsofgearpairs.Moreover,itisdesignandsometimesassemblydependenthowthesedifferent amountsoferrorsongearsinmeshactuponeachotherandaffecttheresultantgeardynamics.Consequently,understanding theroleandeffectofdifferentgeardesignandmanufacturingbasederrorsandtolerancesonthetransmissionerrorsofgears is important.One ofthe mostsignificantcontributorsto the geartransmissionerroris thetoothspacingerrors.Gear tooth spacingerrorisdefinedasthecircumferentialpositionerrorofonegeartoothflankwithrespecttotheprevioustoothflank asillustratedinFig.1.1[1].Here,consecutiveteetharelocatedonareferencediameter(usuallypitchdiameter)ofagear. In an ideal situation, a particular gear has Z number of teeth that have identical involute profiles that are equally spaced around the pitch diameter. Existence of spacing error means that some of the tooth profiles are angularly misplaced from their idealpositionwith respectto theteeth adjacentto them.Thereferencetooth(index)ischosenasTooth-1in Fig. 1.1 withoutlossofgenerality.TherighthandsideflankofTooth-1isthereferenceprofile(flank)whencertainamountoftorque actingintheclockwisedirectionisassumedtoexistonthisgear.Thecirculardistances,S1andS2,betweentherightflanks ofTooth-1andTooth-2andalsobetweenTooth-2andTooth-3,wherebothflanksintersectthereferencediameterareboth equaltoacircularpitchp(p D(cid:2):m)foragearwithidealgeometry.IfS1deviatesfromthenominalcircularpitchpthenthe differenceisinterpretedasthespacingerror" forTooth-2.Similarly,ifS2hasadifferentvaluethanpthenitisinterpreted 1 asthespacingerror" forTooth-3. 2 Gear tooth spacing errorsarise duringthe manufacturingprocesses and in many cases have periodicitiesrelated to the cuttingorheattreatmentprocessinadditiontotherandomcomponents[2].Periodicitiesintransmissionerrorfunctionare usuallyloworderandtendtoresultinamplitudeandphasemodulationofthegeardynamicmeshforces.Iftransmissionerror isofthisform,therewillbeanumberofsidebandswithsignificantenergycontentlocatedaroundthetoothmeshorderand itsmultiples.Itisvitaltounderstandthedegreeofmodulationsasitisareflectionofthetypeandamountofmanufacturing errorsthatexistonthegears. M.Inalpolat((cid:2)) StructuralDynamicsandAcousticSystemsLaboratory,UniversityofMassachusettsLowell,OneUniversityAvenue,Lowell,MA01854,USA e-mail:[email protected] ©TheSocietyforExperimentalMechanics,Inc.2015 1 J.DeClerck(ed.),ExperimentalTechniques,RotatingMachinery,andAcoustics,Volume8,ConferenceProceedings oftheSocietyforExperimentalMechanicsSeries,DOI10.1007/978-3-319-15236-3_1
Description: