Inorg.Chem.2008, 47, 29- 41 Experimental and Theoretical Comparison of Actinide and Lanthanide Bonding in M[N(EPR ) ] Complexes (M ) U, Pu, La, Ce; E ) S, Se, Te; 2 2 3 R ) Ph, iPr, H) Andrew J. Gaunt,*,† Sean D. Reilly,† Alejandro E. Enriquez,† Brian L. Scott,† James A. Ibers,‡ Perumal Sekar,‡ Kieran I. M. Ingram,§ Nikolas Kaltsoyannis,*,§ and Mary P. Neu*,† Chemistry DiVision, Plutonium Manufacturing and Technology DiVision, Materials Physics and Applications DiVision, and Associate Directorate for Chemistry, Life, and Earth Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, Department of Chemistry, Northwestern UniVersity, 2145 Sheridan Road, EVanston, Illinois 60208-3113, and Department of Chemistry, UniVersity College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom ReceivedAugust14,2007 TreatmentofM[N(SiMe)] (M)U,Pu(An);La,Ce(Ln))withNH(EPPh) andNH(EPiPr) (E)S,Se),afforded 323 22 22 the neutral complexes M[N(EPR)] (R ) Ph,iPr). Tellurium donor complexes were synthesized by treatment of 223 MI(sol) (M ) U, Pu; sol ) py and M ) La, Ce; sol ) thf) with Na(tmeda)[N(TePiPr)]. The complexes have 3 4 22 been structurally and spectroscopically characterized with concomitant computational modeling through density functional theory (DFT) calculations. The An- E bond lengths are shorter than the Ln- E bond lengths for metal ionsofsimilarionicradii,consistentwithanincreaseincovalentinteractionsintheactinidebondingrelativetothe lanthanide bonding. In addition, the magnitude of the differences in the bonding is slightly greater with increasing softnessofthechalcogendonoratom.TheDFTcalculationsforthemodelsystemscorrelatewellwithexperimentally determined metrical parameters. They indicate that the enhanced covalency in the M- E bond as group 16 is descendedarisesmostlyfromincreasedmetald-orbitalparticipation.Conversely,anincreaseinf-orbitalparticipation isresponsiblefortheenhancementofcovalencyinAn- EbondscomparedtoLn- Ebonds.Thefundamentaland practical importance of such studies of the role of the valence d and f orbitals in the bonding of the f elements is emphasized. 1. Introduction andwasteremediation.1-16Inparticular,theextenttowhich covalentcontributionsareimportantinf-metalbondingwith Two fundamental questions in f-element chemistry are, (1) Roger, M.; Barros, N.; Arliguie, T.; Thue´ry, P.; Maron, L.; Ephri- (1)towhatextentdorelativisticeffectsimpactthecoordina- tikhine,M.J.Am.Chem.Soc.2006,128,8790. tion chemistry of these elements, and (2) what are the (2) Miguirditchian,M.;Guillaneux,D.;Guillaumont,D.;Moisy,P.;Madic, C.;Jensen,M.P.;Nash,K.L.Inorg.Chem.2005,44,1404. bondingdifferencesbetween4fand5fionsofidenticalionic (3) Roger, M.; Belkhiri, L.; Thue´ry, P.; Arliguie, T.; Fourmigue´, M.; radii? Addressing these questions is not only a necessity to Boucekkine, A.; Ephritikhine, M. Organometallics 2005, 24, 4940. (4) Denecke, M. A.; Rossberg, A.; Panak, P. J.; Weigl, M.; Schim- acquire a comprehensive understanding of the fundamental melpfennig,B.;Geist,A.Inorg.Chem.2005,44,8418. electronic,structural,andbondingpropertiesofthefelements (5) Mehdoui, T.; Berthet, J.-C.; Thue´ry, P.; Ephritikhine, M. Chem. butisalsohighlyrelevanttoindustriallyimportantAn(III)/ Commun.(Cambridge)2005,2860. (6) Mehdoui, T.; Berthet, J.-C.; Thue´ry, P.; Salmon, L.; Rivie`re, E.; Ln(III) (An ) actinide, Ln ) lanthanide) separations that Ephritikhine,M.Chem.Eur.J.2005,11,6994. arevitaltothedevelopmentofadvancednuclearfuelcycles (7) Mehdoui,T.;Berthet,J.-C.;Thue´ry,P.;Ephritikhine,M.Eur.J.Inorg. Chem.2004,1996. (8) Karmazin,L.;Mazzanti,M.;Bezombes,J.-P.;Gateau,C.;Pe´caut,J. Inorg.Chem.2004,43,5147. *To whom correspondence should be addressed. E-mail: gaunt@ (9) Choppin,G.R.J.AlloysCompd.2002,344,55. lanl.gov(A.J.G.),[email protected](N.K.),[email protected](M.P.N.). (10) Jensen,M.P.;Bond,A.H.Radiochim.Acta2002,90,205. †LosAlamosNationalLaboratory. (11) Berthet, J.-C.; Miquel, Y.; Iveson, P. B.; Nierlich, M.; Thue´ry, P.; ‡NorthwesternUniversity. Madic,C.;Ephritikhine,M.J.Chem.Soc.,DaltonTrans.2002,3265. §UniversityCollegeLondon. (12) Jensen,M.P.;Bond,A.H.J.Am.Chem.Soc.2002,124,9870. 10.1021/ic701618a CCC: $40.75 © 2008 American Chemical Society Inorganic Chemistry, Vol. 47, No. 1, 2008 29 PublishedonWeb11/20/2007 Gaunt et al. soft donor atoms remains unresolved, as does the role of vitalforacombinedexperimentalandcomputationalinves- the valence d and f orbitals. One approach to studying this tigation.Arelativelysmallnumberofstudieshaveobserved topicistocrystallographicallycharacterizecomplexesof4f shorteractinide-ligandthanlanthanide-ligandbondlengths and5fmetalions,ofsimilarionicradii,withsoft-donoratom with soft-donor atom ligands in structurally similar com- ligands and to use increasingly precise single-crystal X-ray plexes.Forexample,inthephosphitecomplexes(MeC H ) - 5 4 3 diffractiondataandcomputationalbondingmodelstoobserve ML(M)UorCe;L)P(OCH ) CEt)theU-Pdistanceis 2 3 and provide rationale for subtle differences in M-L bond shorter than the Ce-P distance by 0.098 Å.16 In the lengths, specifically to identify and understand differences complexes M(9-aneS )I (MeCN) (M ) U, La; 9-aneS ) 3 3 2 3 in covalency. 1,4,7-trithiacyclononane)theaverageU-Sdistanceisshorter Obviousfunctionalitiestoutilizeforstudiesofcovalency than the average La-S distance by 0.0435 Å,14 and in the areAndLmultiplebonds.Thebondingofhigheroxidation complexes M(tpza)I3(thf) (M ) U, La; tpza ) tris[(2- states(+VIand+V)ofsomeoftheearlyactinides(U,Np, pyrazinyl)methyl]amine)theaverageU-Npyrazinedistanceis Pu,andAm)isdominatedbythelinearactinylcations17that shorterthantheaverageLa-Npyrazinedistanceby0.048Å.13 containthemultiplybondeddioxoOdAndOmoiety,18but The comparison of bonding in M(SMes*)3 (M ) U, La; no high oxidation states for the lanthanides exist for SMes* is a “supermesityl” thiolate ligand) complexes comparison with the actinyl ions. Multiple bonds in lower revealed a U-S distance that is shorter than the La-S oxidation-state actinide ions (mostly U(IV)) occur with distance by an average value of 0.025 Å;1 this represents a sterically bulky and inert stabilizing ligands such as Cp*- rareexampleinwhichhomoleptic4f/5fcomplexeswithsoft (pentamethylcyclopentadienide).19 However, we are not donorshavebeencompared.Interestingly,JensenandBond aware of any isostructural comparisons of MdL multiple conductedanEXAFSsolutionstudytolookfordifferences bonds between 4f and 5f complexes. This is probably a inbondlengthsintrivalentAm,Cm,Nd,andSmcomplexes reflectionofthedearthofMdLmultiplebondsreportedin withdithiophosphinicacids,whichhaveshownexceptional f-element chemistry, particularly of An(III)dL multiple selectivityforAm(III)overEu(III)inliquid-liquidextrac- bonds. Therefore, we need to look to other functionalities tionstudies.12However,inthatstudytherewasnoevidence andsystemstoassesscovalencydifferencesbetweenAnand fromtheEXAFSdataofshortenedAn-Sbondsrelativeto Ln bonding. Ln-S bonds. It may well be that the observed extraction behavior still was the result of increased covalency in the Coordination chemistry studies that directly compare An An-S bonds relative to the Ln-S bonds but that the bond andLnbondingtosoftdonoratomshavebeeninspiredtoa length differences were too small to be observed experi- largeextentbysolutionLn(III)/An(III)extraction,separation, mentally. Therefore, to be able to observe bond length and ion exchange experiments, which have demonstrated a differences resulting from covalency, it may be necessary preference of soft donor extractants for An(III) ions over Ln(III) ions.10,12,15,20-23 Understanding the origin of the to use model soft-chalcogen donor complexes judiciously chosentomaximizecovalentcharacterandthentoextrapo- separationandextractionbehaviorswithsoftdonorsisgreatly latethoseresultstomoreappliedsolventextractionsystems. aidedbythesynthesisandcharacterizationofcrystallizable Our approach to elucidating differences in covalency molecular complexes containing soft-donor ligands, which between An(III) and Ln(III) bonding, as described here, is allowsstructuralandgeometricdatatobeobtainedthatare toundertakeanexperimentalandtheoreticalcomparisonof homoleptic, structurally similar An(III) and Ln(III) com- (13) Mazzanti, M.; Wietzke, R.; Pe´caut, J.; Latour, J.-M.; Maldivi, P.; Remy,M.Inorg.Chem.2002,41,2389. plexesinwhichtwoimportantfactorsareexplored: (1)The (14) Karmazin,L.;Mazzanti,M.;Pe´caut,J.Chem.Commum.(Cambridge) electronegativity (or softness) of the ligand donor atom is 2002,654. (15) Choppin,G.R.;Nash,K.L.Radiochim.Acta1995,70-1,225. varied in order to test the hypothesis that An(III) ions have (16) Brennan, J. G.; Stults, S. D.; Andersen, R. A.; Zalkin, A. Organo- greater covalency in their bonding with soft donor ligands metallics1988,7,1329. than do Ln(III) ions of identical ionic radii and that the (17) See, for example: (a) Burns, C. J.; Neu, M. P.; Boukhalfa, H.; Gutowski, K. E.; Bridges, N. J.; Rogers, R. D. in ComprehensiVe difference in covalency is more pronounced the softer the CoordinationChemistryII,Vol.3;McCleverty,J.A.,Meyer,T.J., donor atom. (2) The positive charge density of the 4f- and Eds.;ElsevierPergamon: Amsterdam,2004;p189.(b)Katz,J.J.; Seaborg,G.T.;Morss,L.R.TheChemistryoftheActinideElements, 5f-metalionsisvariedtostudytheeffectthatthelanthanide/ Vols.1and2,2nded.;ChapmanandHall: NewYork,1986. actinide contraction has upon bonding differences, in order (18) Denning,R.G.Struct.Bonding(Berlin)1992,79,215. totestthehypothesisthat,asthef-elementseriesistraversed, (19) See,forexample: (a)Jantunen,K.C.;Burns,C.J.;Castro-Rodriguez, I.;DaRe,R.E.;Golden,J.T.;Morris,D.E.;Scott,B.L.;Taw,F.L.; thepotentialforanycovalencyinthebondingdecreases.In Kiplinger,J.L.Organometallics2004,23,4682.(b)Arney,D.S.J.; this respect, we recently communicated the syntheses and Schnabel,R.C.;Scott,B.L.;Burns,C.J.J.Am.Chem.Soc.1996, 118,6780.(c)Arney,D.S.J.;Burns,C.J.J.Am.Chem.Soc.1995, molecularstructuresofM[N(TePiPr2)2]3(M)U,La)24and 117,9448.(d)Cramer,R.E.;Maynard,R.B.;Paw,J.C.;Gilje,J.W. U[N(EPPh ) ] (E)S,Se)25complexesalongwithprelimi- J.Am.Chem.Soc.1981,103,3589. 2 2 3 nary computational results on the La, U, and Pu systems26 (20) Hagstro¨m,I.;Spjuth,L.;Enarsson,Å.;Liljenzin,J.O.;Skålberg,M.; Hudson, M. J.; Iveson, P. B.; Madic, C.; Cordier, P. Y.; Hill, C.; Francois,N.SolVentExtr.IonExch.1999,17,221. (24) Gaunt,A.J.;Scott,B.L.;Neu,M.P.Angew.Chem.,Int.Ed.2006, (21) Zhu,Y.Radiochim.Acta1995,68,95. 45,1638. (22) Musikas, C.; Cuillerdier, C.; Livet, J.; Forchioni, A.; Chachaty, C. (25) Gaunt,A.J.;Scott,B.L.;Neu,M.P.Chem.Commun.(Cambridge) Inorg.Chem.1983,22,2513. 2005,3215. (23) Diamond, R. M.; Street, K., Jr.; Seaborg, G. T. J. Am. Chem. Soc. (26) Ingram,K.I.M.;Kaltsoyannis,N.;Gaunt,A.J.;Neu,M.P.J.Alloys 1954,76,1461. Compd.2007,444-445,369. 30 InorganicChemistry,Vol.47,No.1,2008 An(III)/Ln(III)BondingComparison thatdemonstratedthepotentialofimidodiphosphinochalco- overseveraldays.Themotherliquorwaspipettedaway;thecrystals genideligandsystemstofacilitateasystematicstudyofAn- werecollectedanddriedinvacuotogiveawhitepowder(0.0362 (III) vs Ln(III) covalency. Here we report a much more g,76%yield).31P{1H}NMR: (CD2Cl2): (cid:228)42.6.IR(KBr,Nujol,- comprehensivestructuralandspectroscopiccharacterization cm-1): 1199(s), 1179(m), 1156(m), 1070(m), 1026(w), 999(w), of M[N(EPPh ) ] (M ) U, Pu, La, Ce; E ) S, Se) and 977(w),969(w),918(w),756(w),744(m),739(m),724(s),715(m), 2 2 3 M[N(EPiPr ) ] (M)U,Pu,La,Ce;E)S,Se,Te),together 707(w), 693(s), 626(w), 619(w), 609(w), 596(s), 513(s), 493(m), 2 2 3 470(m). Anal. Calcd for C H NPSLa: C, 60.19; H, 4.35; N, withdensityfunctionaltheorystudiesofM[N(EPH ) ] (M 79 68 3 6 6 2 2 3 2.67.Found: C,60.46;H,4.27;N,2.61. ) U, Pu, La, Ce; E ) O, S, Se, Te) models for the iPr 2.1.3.Pu[N(SPPh)](cid:226)toluene(3).Thiscompoundwasprepared 223 systems. We decided to focus our computational efforts on as for 2 using NH(SPPh) (0.0187 g, 0.042 mmol) and Pu- 22 the six-coordinate bidentate systems, so as to remove the [N(SiMe)] (0.0100g,0.014mmol)toyieldcrystalline3,which 323 potentiallycomplicatingeffectsofM(III)-Nbondinginthe washarvestedasagreenpowderafterdrying(0.0173g,79%yield). nine-coordinate tridentate systems. It is noteworthy that 31P{1H} NMR (CDO) (prepared in situ because of the low 4 8 undertaking a study involving nonaqueous coordination solubilityof3): (cid:228)-47.11(complex3),52.06(freeligand).UV/ chemistryofmolecularplutoniumcompoundsisparticularly vis/near-IR(solutionof3preparedinsituinTHF)((cid:236)max,nm): 247, challengingowingtothedifficultyofhandlinghighspecific 299,351,520,566,578,612,674,787,826,920,1036,1136,1437, 1531. activity transuranic radionuclides and the paucity of well- 2.1.4.Ce[N(SPPh)](cid:226)toluene(4).Thecompoundwasprepared characterized precursors. Nevertheless, such studies are 223 as for 2 using NH(SPPh) (0.0672 g, 0.149 mmol) and Ce- importantifwearetounderstandtheeffectofthef-element 22 [N(SiMe)] (0.0300g,0.048mmol)toyieldcrystalline4,which contraction in these complexes. 323 washarvestedasapaleyellow/greenpowderafterdrying(0.0426 g,59%yield).31P{1H}NMR(CDCl): (cid:228)4.92.IR(KBr,Nujol) 2. Experimental Section 2 2 (cm-1): 1200(s), 1178(s), 1156(m), 1101(m), 1069(w), 1026(w), 2.1. Syntheses. Caution! 239Pu is a high specific-activity 999(w), 977(w), 967(w), 918(w), 894(w), 843(w), 773(w), 756- R-particle-emittingradionuclide.Thisresearchwasconductedina (m),744(m),739(m),724(s),712(m),707(w),693(s),626(w),619- radiological facility with appropriate analyses of hazards and (w),596(s),513(s),492(m),470(m).Anal.CalcdforC79H68N3P6S6- implementationofcontrolsforthesafehandlingandmanipulation Ce: C,60.14;H,4.34;N,2.66.Found: C,60.86;H,4.49;N,2.54. ofradioactivematerials. 2.1.5.U[N(SePPh2)2]3(cid:226)C6D6(5).Thiscompoundwasprepared R-phase plutonium metal pieces of weapons-grade isotopic aspreviouslydescribed.25 compositionanduraniumturnings(depletedin235U)wereobtained 2.1.6. La[N(SePPh2)2]3(cid:226)toluene (6). This compound was pre- internallyfromLosAlamosNationalLaboratory.Allreactionswere paredasfor2usingNH(SePPh2)2(0.0540g,0.099mmol)andLa- performedinanMBraunLabmaster130heliumatmospheredrybox. [N(SiMe3)2]3(0.0200g,0.032mmol)toyieldcrystalline6,which Diethyl ether, toluene, hexanes, and tetrahydrofuran (THF) were washarvestedasawhitepowderafterdrying(0.0392g,69%yield). driedwiththeuseofactivatedaluminacolumns(A2,1232,Purify). 31P{1H}NMR: (CD2Cl2): (cid:228)33.6IR(KBr,Nujol;cm-1): 1185- Other solvents were purchased in anhydrous grade from Aldrich. (m),1165(s),1154(s),1098(m),1069(m),1024(m),998(w),977- Allsolventswerestoredovera1:1mixtureof3and4Åmolecular (w), 967(w), 918(w), 843(w), 755(m), 743(m), 738(m), 721(s), sieves before use. Infrared spectra were obtained as Nujol mulls 711(m), 690(s), 654(m), 618(w), 562(s), 547(m), 541(m), 507(s), between KBr plates on a Nicolet Magna-IR 560 spectrometer 481(m), 468(w), 453(w). Anal. Calcd for C79H68N3P6Se6La: C, equippedwithaDTGSdetector.1HNMRspectrawerereferenced 51.07;H,3.69;N,2.26.Found: C,51.60;H,3.50;N,2.22. toresidualprotioresonances,and31PNMRspectrawerereferenced 2.1.7. Pu[N(SePPh2)2]3(cid:226)toluene (7). This compound was pre- toexternal85%H3PO4.AllNMRspectrawereobtainedonsamples paredasfor2usingNH(SePPh2)2(0.0226g,0.042mmol)andPu- in4mmTeflonNMRtubelinersinsertedinto5mmNMRtubes [N(SiMe3)2]3(0.0100g,0.014mmol)toyieldcrystalline7,which inordertomultiplycontaintheradioactivesamples.NMRspectra washarvestedasagreenpowderafterdrying(0.0155g,60%yield). were recorded at ambient temperature on a Bruker Avance 300 31P{1H}NMR(C4D8O): (cid:228)-59.18(complex7),51.97(freeligand). MHzspectrometer.Electronicabsorptionspectrawererecordedon Peaksintegratewiththeratio7:1.UV/vis/near-IR(solutionof7in aVarianCary6000iUVvis/near-IRspectrophotometer.Elemental THF) ((cid:236)max, nm): 245, 326, 523, 576, 611, 618, 675, 797, 811, analyses were performed by the Micro-Mass facility at the 828, 917, 932, 1041, 1061, 1116, 1127, 1141, 1164, 1447, 1514. UniversityofCaliforniaatBerkeley,Berkeley,CA.U[N(SiMe3)2]3 2.1.8. Ce[N(SePPh2)2]3(cid:226)toluene (8). This compound was pre- waspreparedaccordingtotheliterature,27andPu[N(SiMe3)2]3was paredasfor2usingNH(SePPh2)2(0.0807g,0.149mmol)andCe- preparedbyamodificationofaliteratureprocedure.27UI3(py)4and [N(SiMe3)2]3(0.0300g,0.048mmol)toyieldcrystalline8,which PuI(py) werepreparedaccordingtotheliterature.27LaI(thf) and washarvestedasapalegreenpowderafterdrying(0.0528g,62% 3 4 3 4 CeI3(thf)4 were prepared by stirring anhydrous LaI3 and CeI3 in yield).31P{1H}NMR(CD2Cl2): (cid:228)-8.34.IR(KBr,Nujol;cm-1): THFovernightandcollectingtheresultingpowders. 1185(w), 1167(s), 1154(s), 1098(m), 1071(w), 1025(w), 998(w), 2.1.1.U[N(SPPh )](cid:226)toluene(1).Thiscompoundwasprepared 976(w), 969(w), 936(w), 918(w), 893(w), 850(w), 772(w), 755- 223 aspreviouslydescribed.25 (w),743(w),738(m),721(s),690(m),654(m),618(w),561(m),547- 2.1.2.La[N(SPPh)](cid:226)toluene(2).NH(SPPh) (0.0448g,0.100 (m), 540(w), 530(w), 508(m), 481(w), 418(w). Anal. Calcd for 223 22 mmol)wasdissolvedinTHF(1.5mL)andfilteredthroughaglass C79H68N3P6Se6Ce: C, 51.04; H, 3.69; N, 2.26. Found: C, 51.70; fiber filter circle. La[N(SiMe)] (0.0200 g, 0.032 mmol) was H,3.90;N,2.21. 323 dissolvedintoluene(1.5mL),filteredandcarefullylayeredontop 2.1.9.U[N(SPiPr2)2]3(9).U[N(SiMe3)2]3(0.0500g,0.070mmol) oftheligandTHFsolution.Crystalsof2precipitatedfromsolution wasdissolvedinTHF(6mL).NH(SPiPr2)2(0.0653g,0.208mmol) was dissolved in THF (2 mL) and added dropwise to the U-containing solution. The resulting purple solution was stirred (27) Avens,L.R.;Bott,S.G.;Clark,D.L.;Sattelberger,A.P.;Watkin,J. G.;Zwick,B.D.Inorg.Chem.1994,33,2248. overnight.Thesolutionwasfiltered,andthesolventwasremoved Inorganic Chemistry, Vol. 47, No. 1, 2008 31 Gaunt et al. invacuotoyieldapurplepowder,whichwasdriedinvacuo(0.0642 C H NPSeU: C,29.68;H,5.81;N,2.88.Found: C,29.38;H, 36 84 3 6 6 g,79%yield).CrystalssuitableforX-raydiffractionwereobtained 5.65;N,2.74. from a THF/hexanes solution of 9 stored at -35 (cid:176) C for several 2.1.14.La[N(SePiPr)] (14).La[N(SiMe)] (0.0300g,0.048 223 323 days. 31P{1H} NMR (C6D6): (cid:228) -525.1. IR (KBr, Nujol; cm-1): mmol)wasdissolvedinTHF(5mL).NH(SePiPr2)2(0.0591g,0.145 1266(s),1230(s),1169(m),1159(m),1096(w),1080(m),1040(w), mmol) was dissolved in THF (2 mL) and added dropwise to the 1029(m),974(m),933(m),920(w),885(m),850(m),775(m),722- La-containingsolution.Theresultingcolorlesssolutionwasstirred (s),677(m),656(m),628(w),563(w),550(w),539(w),504(w),489- overnight,thevolumewasreducedinvacuoto1mL,andEt O(5 2 (w), 474(w). UV/vis/near-IR (solution of 9 in THF) ((cid:236)max, nm): mL)wasaddedwithshaking.Theresultantclear,colorlesssolution 302(sh),474(sh),541(sh),571,616(sh),644(sh),675(sh),710(sh), wasstoredat-35(cid:176) Cforseveraldaystogiveawhitecrystalline 779(sh),928,1097,1210,1250.Anal.CalcdforC36H84N3P6S6U: solid, which was dried in vacuo (0.0483 g, 72% yield). Single C,36.79;H,7.20;N,3.58.Found: C,37.81;H,7.38;N,3.47. crystals suitable for X-ray diffraction were obtained from a THF 2.1.10.La[N(SPiPr2)2]3(10).La[N(SiMe3)2]3(0.0300g,0.048 solutionof14layeredwithEt2Oandstoredat-35(cid:176) Cforseveral mmol)wasdissolvedinTHF(5mL).NH(SPiPr2)2(0.0456g,0.145 days. 31P{1H} NMR (C6D6): (cid:228) 56.78. 1H NMR (C6D6): (cid:228) 2.12 mmol) was dissolved in THF (2 mL) and added dropwise to the (m,12H;CH(CH3)2),1.29(m,72H;CH(CH3)2).IR(KBr,Nujol; La-containingsolution.Theresultingcolorlesssolutionwasstirred cm-1): 1268(m),1231(m),1182(w),1171(m),1158(m),1098(w), overnight, the volume was then reduced in vacuo to 1 mL, and 1080(m),1040(w),1023(m),974(m),933(m),885(m),761(m),722- EtO(5mL)wasaddedwithshaking.Theclear,colorlesssolution (s),682(w),669(m),630(s),604(w),519(w),508(w),473(m).Anal. 2 wasstoredat-35(cid:176) Cforseveraldaystogiveawhitecrystalline Calcd for C36H84N3P6Se6La: C, 31.85; H, 6.24; N, 3.01. Found: solid, which was dried in vacuo (0.0350 g, 67% yield). Crystals C,31.93;H,6.27;N,3.06. suitableforX-raydiffractionwereobtainedfromaTHFsolution 2.1.15. Pu[N(SePiPr)] (15). Pu[N(SiMe)] (0.0108, 0.015 223 323 of10layeredwithEt2Oandstoredat-35(cid:176) Cforseveraldays.1H mmol) was dissolved in THF (5 mL), and NH(SePiPr2)2 (0.0183 NMR (C6D6): (cid:228) 2.25 (m, 12H; CH(CH3)2), 1.38, 1.23 (m, 72H; g,0.045mmol)wasadded.Thesolutionwasstirredovernightand CH(CH3)2). Less intense peaks were also observed for the minor was filtered to give a green filtrate, and then the solvent was freeligandcomponent.31P{1H}NMR(CD): (cid:228)64.31(complex removedinvacuo.Thegreenpowderwasdissolvedintoluene(1.5 6 6 10),86.76(freeligand).Peaksintegratedwiththeratio12.9:1.IR mL),filtered,thenlayeredwithhexanes,andstoredat-35(cid:176) Cfor (KBr, Nujol; cm-1): 1268(s), 1232(s), 1162(m), 1096(w), 1080- several days to give green crystals, which were dried in vacuo (m), 1040(w), 1026(m), 974(m), 931(m), 884(s), 773(s), 722(s), (0.0078 g, 36% yield). 1H NMR (CD): (cid:228) 2.23 (m, 12H; 6 6 677(m),656(s),630(w),563(w),551(w),540(w),506(w),489(m), CH(CH)), 1.30 (s, 72H; CH(CH)). 31P{1H} NMR (CD): (cid:228) 32 32 6 6 475(w), 419(m), 413(m). Anal. Calcd for C H NPSLa: C, -20.06. UV/vis/near-IR (solution of 15 in benzene) ((cid:236) , nm): 36 84 3 6 6 max 40.18;H,7.87;N,3.90.Found: C,40.53;H,7.97;N,3.91. 298,330,414,529,556,577,608,618,683,802,826,914,1053, 2.1.11.Pu[N(SPiPr)] (11).Pu[N(SiMe)] (0.0246g,0.034 1086,1149,1452. 223 323 mmol)wasdissolvedinTHF(5mL),andNH(SPiPr) (0.0321g, 2.1.16.U[N(TePiPr)] (16).Thiscompoundwaspreparedas 22 223 0.102 mmol) was added. The solution was stirred overnight and previouslydescribed.24 thenwasfilteredtogiveagreenfiltrate.Et2O(1mL)wasadded 2.1.17.La[N(TePiPr2)2]3(17).Thiscompoundwaspreparedas with shaking, and the mixture was stored at -35 (cid:176) C for several previouslydescribed.24 daystogivegreencrystals,whichweredriedinvacuo(0.0162g, 2.1.18.Pu[N(TePiPr)] (18).PuI(py) (0.0148g,0.016mmol) 223 3 4 40% yield). 1H NMR (CD): (cid:228) 2.20 (s, 12H; CH(CH)), 1.32, 6 6 32 wassuspendedinEtO(5mL),andNa(tmeda)[N(TePiPr)]inEtO 1.22 (s, 72H; CH(CH3)2). 31P{1H} NMR (C6D6): (cid:228) -1.40. UV/ (0.0307g,0.047mm2ol)(2.5mL)wasadded(tmeda)te2tr2amethy2l- vis/near-IR(solutionof11inbenzene)((cid:236) ,nm): 286,299(sh), max ethylenediamine).Anorange/redsuspensionformedimmediately. 321(sh),345(sh),392,526,578,608,619,680,801,823,915,1051, The suspension was stirred for 20 min and then stored overnight 1130,1139,1149,1450. at-35(cid:176) Ctoallowthesolidtosettletothebottomofthevial.The 2.1.12.Ce[N(SPiPr2)2]3(12).Ce[N(SiMe3)2]3(0.0150g,0.024 motherliquorwaspipettedaway,andthesolidwasdriedinvacuo. mmol)wasdissolvedinTHF(5mL),andNH(SPiPr2)2(0.0227g, Toluene(5mL)wasaddedtothesolid,thesolutionfiltered,and 0.072 mmol) was added and the solution stirred overnight. The EtO(10mL)wasaddedtothefiltratewithshaking.Theresultant 2 resultant green solution was filtered, and then Et2O (1 mL) was solution was stored at -35 (cid:176) C for several days to give a red addedwithshaking.Themixturewasstoredat-35(cid:176) Cforseveral microcrystalline solid, which was dried in vacuo (0.0119 g, 43% days to give a few green crystals, which were suitable for X-ray yield).SinglecrystalssuitableforX-raydiffractionwereobtained diffraction. fromaTHF/EtOsolutionof18storedat-35(cid:176) Cforseveraldays. 2 2.1.13. U[N(SePiPr2)2]3 (13). U[N(SiMe3)2]3 (0.0500 g, 0.070 1HNMR(C7D8): (cid:228)1.97(m,12H;CH(CH3)2),1.19(s,72H;CH- mmol)wasdissolvedinTHF(6mL).NH(SePiPr2)2(0.0850g,0.209 (CH3)2).31P{1H}NMR(C7D8): (cid:228)-62.22.UV/vis/near-IR(solution mmol) was dissolved in THF (2 mL) and added dropwise to the of 18 in toluene) ((cid:236)max, nm): 467(sh), 579, 620, 685, 804, 829, U-containing solution. The resultant purple solution was stirred 916,1057,1087(sh),1148,1465. overnight.Thesolutionwasfiltered,andthesolventwasremoved 2.1.19. Ce[N(TePiPr)] (19). CeI(THF) (0.0300 g, 0.037 223 3 4 invacuotoyieldapurplepowder,whichwasdriedinvacuo(0.0771 mmol) was suspended in Et O (5 mL). Na(tmeda)[N(TePiPr ) ] 2 2 2 g,76%yield).CrystalssuitableforX-raydiffractionwereobtained (0.0720g,0.111mmol)wasdissolvedinEt O(2.5mL)andadded 2 from a THF/hexanes solution of 13 stored at -35 (cid:176) C for several dropwise to the Ce-containing solution to afford a salmon-pink days. 31P{1H} NMR (CD): (cid:228) -573.9. IR (KBr, Nujol; cm-1): coloredsuspension,thatwasstirredfor20minandthenstoredat 6 6 1262(m),1256(m),1230(s),1162(w),1097(w),1081(w),1040(w), -35(cid:176) Ctoallowthesolidtosettletothebottomofthevial.The 1028(m),973(w),933(m),905(w),885(m),850(m),764(w),722- motherliquorwaspipettedaway,andthesolidwasdriedinvacuo. (m),682(w),671(m),632(s),604(w),519(w),509(w),474(w),418- Toluene(3mL)wasaddedtothesolid,thesolutionfiltered,and (w).UV/vis/near-IR(solutionof13inTHF)((cid:236) ,nm): 482(sh), EtO (10 mL) added to the filtrate with shaking. The resultant max 2 538,579,658(sh),783(sh),832,935,1073,1235.Anal.Calcdfor solutionwasstoredat-35(cid:176) Cforseveraldaystogiveapink-red 32 InorganicChemistry,Vol.47,No.1,2008 An(III)/Ln(III)BondingComparison attachedto.Allnon-hydrogenatomswererefinedanisotropically. Structuresolution,refinement,graphics,andcreationofpublication materialswereperformedusingSHELXTL.31Furtherdetailsmay befoundintheSupportingInformation. 2.3. Computational Details. All calculations were carried out usinggradient-correcteddensityfunctionaltheory,asimplemented intheGaussian(G03)32andAmsterdamDensityFunctional(ADF)33 quantum chemical codes. Spin-unrestricted calculations were performedonallLnandAncomplexestoaccountfortheformal fnconfigurationsofeachLn(III)andAn(III)ionwiththeexception oftheformallyf0La(III)ion,onwhichspin-restrictedcalculations wereperformed. 2.3.1.G03.TheGGAfunctionalPBE34,35wasusedforallG03 calculations. (14s 13p 10d 8f)/[10s 9p 5d 4f] segmented valence basissetswithStuttgart-Bonnvariety36relativisticeffectivecore potentials (RECPs) were used for the actinides, and a (14s 13p 10d8f)/[10s8p5d4f]segmentedvalencebasissetwithaStuttgart- Figure 1. Thermal ellipsoid plot (at the 50% probability level) of the BonnRECP36wasusedforeachlanthanide.6-31G*basissetswere structure of Pu[N(SePPh2)2]3 (7), with the H atoms and lattice toluene usedfortheO,S,Se,N,andPatoms,andthesmaller6-31Gset molecule omitted for clarity. The complexes 1-6 and 8 have identical wasusedforH.Tewasdescribedwitha(4s5p)/[2s3p]Stuttgart connectivity. basisset37augmentedto(4s5p7d)/[2s3p3d]withSTO-3G*38,39 microcrystalline solid, which was dried in vacuo (0.0221 g, 36% polarizationfunctions(forconsistency,as6-31G*includespolariza- yield).SinglecrystalssuitableforX-raydiffractionwereobtained tion functions on O, S, and Se); a Stuttgart RECP was also used fromaTHF/EtOsolutionof19storedat-35(cid:176) Cforseveraldays. forTe.37ThevalidityofthisaugmentedTebasissetwaschecked 2 1H NMR (CD): (cid:228) 0.18 (s, 12H; CH(CH)), -0.06, -0.81 (d, byconstructingananalogousSebasissetsaStuttgart(4s5p)/[2s 7 8 32 72H;CH(CH)).31P{1H}NMR(CD): (cid:228)-9.98.IR(KBr,Nujol; 3p] augmented to (4s 5p 4d)/[2s 3p 2d]sand performing test 32 7 8 cm-1): 1275(m),1227(m),1202(m),1181(w),1171(w),1157(m), geometryoptimizationson[M(N(SePH2)2)3]forM)La,U;similar 1097(w), 1077(m), 1033(w), 1018(m), 974(m), 932(m), 881(m), geometrieswerefoundwithbothmethods.Thedefaultvaluesfor 772(w), 723(s), 694(m), 659(m), 635(m), 609(m), 597(m), 510- theintegrationgrid(“fine”)andtheconvergencecriteriawereused (m),471(m).Anal.CalcdforC H NPTeCe: C,26.20;H,5.13; forallLa,Ce,andUgeometryoptimizations(maximumforce) 36 84 3 6 6 N,2.55.Found: C,26.55;H,5.06;N,2.48. 4.5(cid:2)10-4auÅ-1;SCF)10-8).ThePucalculationsweremore 2.2.CrystallographicDataCollectionandRefinement.Each problematic, and the following convergence criteria were Pu-containing crystal was coated with Paratone-N and then achieved: [Pu(N(OPH2)2)3](maximumforce)7(cid:2)10-4auÅ-1; mounted inside a 0.5 mm capillary. The capillaries were sealed SCF ) 10-7), [Pu(N(SPH2)2)3] (maximum force ) 8 (cid:2) 10-4 au withwax,andtheirexternalsurfaceswerecoatedwithathinfilm Å-1;SCF)10-5),[Pu(N(SePH2)2)3](maximumforce)5(cid:2)10-4 ofacrylicdissolvedinethylacetate(HardasNailsnailpolish)to auÅ-1;SCF)10-8),and[Pu(N(TePH2)2)3](maximumforce)8 provide appropriate containment of the radioactive material. (cid:2) 10-4 au Å-1; SCF ) 10-5). A natural charge and population Otherwise, non-Pu-containing crystals were mounted in Nylon analysis40-46wascarriedoutonallG03optimizedstructures.Little cryoloopsfromParatone-Noilunderanargon-gasflow.Thedata spincontaminationwasfoundforthequadrupletU(III)complexes, for525and12werecollectedonaBrukerP4/CCDdiffractometer asevidencedbythefactthatthevaluesofÆS2æ werecloseto3.75 at 203 K with the use of a Bruker LT-2 temperature device. The (31) SHELXTL5.10;BrukerAXS: Madison,WI,1997. instrumentwasequippedwithasealed,graphite-monochromatized (32) Frisch,M.J.;etal.Gaussian03,revisionD.01;Gaussian: Wallingford, MoKRX-raysource((cid:236))0.71073Å).Ahemisphereofdatawas CT,2004. collectedusing(cid:246)scans,with30sframeexposuresand0.3(cid:176) frame (33) (a)ADF,SCM,TheoreticalChemistry,VrijeUniversiteit,Amsterdam, The Netherlands (http://www.scm.com). (b) Fonseca Guerra, C.; widthsat203(2)K.Thedataforalltheothercrystalswerecollected Snijders,J.G.;teVelde,G.;Baerends,E.J.Theor.Chem.Acc.1998, on a Bruker SMART APEX II CCD X-ray diffractometer with a 99,391.(c)teVelde,G.;Bickelhaupt,F.M.;Baerends,E.J.;Fonseca KRYO-FLEX liquid nitrogen vapor cooling device at 141(2) K. Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T., J. Theinstrumentwasequippedwithagraphite-monochromatizedMo Comput.Chem.2001,22,931. KRX-raysource((cid:236))0.71073Å),withMonoCapX-raysource (34) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett. 1996, 77, 3865. optics.Ahemisphereofdatawascollectedusing(cid:246)scans,with5 (35) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett. 1997, 78, sframeexposuresat0.3(cid:176) framewidths.Datacollectionandinitial 1396. (36) Cao,X.;Dolg,M.J.Mol.Struct.(THEOCHEM)2004,673,203. indexingandcellrefinementwerehandledwithAPEXII28software. (37) Bergner,A.;Dolg,M.;Ku¨chle,W.;Stoll,H.;Preu(cid:226),H.Mol.Phys. Frameintegration,includingLorentz-polarizationcorrectionsand 1993,80,1431. finalcellparametercalculations,werecarriedoutusingSAINT+29 (38) Hehre,W.J.;Stewart,R.F.;Pople,J.A.J.Chem.Phys.1969,51, software. The data were corrected for absorption with the SAD- 2657. (39) Collins,J.B.;Schleyer,P.v.R.;Binkley,J.S.;Pople,J.A.J.Chem. ABS30 program. Decay of reflection intensity was monitored via Phys.1976,64,5142. analysisofredundantframes.Eachstructurewassolvedusingdirect (40) Carpenter,J.E.;Weinhold,F.J.Mol.Struct.(THEOCHEM)1988, methods and difference Fourier techniques. All hydrogen-atom 169,41. (41) Carpenter,J.E.Ph.D.Thesis,UniversityofWisconsin: Madison,WI, positionswereidealizedandrodeontheatomstowhichtheywere 1987. (42) Foster,J.P.;Weinhold,F.J.Am.Chem.Soc.1980,102,7211. (28) APEXII1.08;BrukerAXS: Madison,WI,2004. (43) Reed,A.E.;Weinhold,F.J.Chem.Phys.1983,78,4066. (29) SAINT+7.06;BrukerAXS: Madison,WI,2003. (44) Reed,A.E.;Weinstock,R.B.;Weinhold,F.J.Chem.Phys.1985, (30) Sheldrick, G. SADABS 2.03; University of Go¨ttingen: Go¨ttingen, 83,735. Germany,2001. (45) Reed,A.E.;Curtiss,L.A.;Weinhold,F.Chem.ReV.1988,88,899. Inorganic Chemistry, Vol. 47, No. 1, 2008 33 Gaunt et al. e6 T compd8 CHCeNPSe79683661859.15hR3c15.1571(3)15.1571(3)57.057(3)90.0090.00120.0011352.0(6)60.02320.0480 compd19 CeHCeNP63684361650.60P2/c122.235(2)13.8343(14)20.843(2)90.00113.5540(10)90.005877.1(11)40.03950.0568 K. compd7 CSeHNPPuSe679683661958.03hR3c15.1505(4)15.1505(4)56.984(3)90.0090.00120.0011327.6(7)60.02060.0536 24compd17compd18 CCHLaNPTeHNPPuT36843663684361649.391749.53P2/cP2/c1122.456(6)22.348(2)13.866(4)13.7485(15)20.828(5)20.723(2)90.0090.00113.295(3)113.6330(10)90.0090.005957(3)5833.0(11)440.05440.04840.12850.0882 )exceptfor12whereT203(2) compd6 CHLaNP7968361857.93hR3c15.1824(5)15.1824(5)57.129(4)90.0090.00120.0011404.2(10)60.02570.0497 24compd16 CHNPTeU36843661748.51P2/c122.3600(18)13.7678(11)20.6919(17)90.00113.405(2)90.005845.8(8)40.03830.0643 orallcompounds f e6 K (cid:226)abTable1.SelectedCrystallographicDataforM[N(EPPh)]solvateandM[N(EPiPr)]Complexes223223 (a)M[N(EPPh)]Complexes223 2525compd1compd2compd3compd4compd5 empiricalformulaCCCCHNPSUCHLaNPSHNPPuSHCeNPSHDNPSeU796836679683667968366796836678606366fw1675.631576.571676.661577.781948.99hhhhhspacegroupR3cR3cR3cR3cR3ca(Å)15.0066(9)15.0368(7)15.0053(4)15.0131(3)15.1699(10)b(Å)15.0066(9)15.0368(7)15.0053(4)15.0131(3)15.1699(10)c(Å)56.107(4)56.186(5)56.133(4)56.130(2)56.846(7)R(deg)90.0090.0090.0090.0090.00(deg)90.0090.0090.0090.0090.00(cid:226)(deg)120.00120.00120.00120.00120.00(cid:231)3V(Å)109424(12)11002.0(12)10945.5(8)10956.4(5)11329.1(18)Z66666R10.02340.03050.02550.03380.0270wR20.05640.06790.06180.10390.0678 (b)M[N(EPiPr)]Complexes223 compd9compd10compd11compd12compd13compd14compd15 empiricalformulaCCCCCHNPSUCHLaNPSHNPPuSHCeNPSHNPSeUCHLaNPSeHNPPuS368436636843663684366368436636843663684366368436fw1175.271076.151176.321077.361456.671357.551457.69hhhhspacegroupP1P1P1P1C2/cP2/cC2/c1a(Å)12.974(3)13.0101(11)12.941(4)13.042(3)23.649(2)22.156(4)23.531(8)b(Å)13.333(3)12.3384(11)13.320(4)13.340(3)13.1855(12)13.517(2)13.118(5)c(Å)18.787(4)18.7969(15)18.779(5)18.965(4)19.6924(18)20.325(4)19.625(7)R(deg)91.189(4)91.1880(10)90.930(4)90.672(3)90.0090.0090.00(deg)108.914(4)108.7370(10)109.056(3)109.289(3)115.2850(10)114.051(3)115.520(6)(cid:226)(deg)117.146(4)117.2740(10)117.154(3)117.232(2)90.0090.0090.00(cid:231)3V(Å)2680.5(11)2690.4(4)2669.3(13)2716.6(9)5552.3(9)5558.4(17)5467(3)Z2222444R10.06090.04120.04130.03830.03180.04570.0868wR20.14470.09240.07310.06840.08410.09320.1558 ))))abSolvatetolueneexceptfor5whereitisCD.T141(2)Kforallcompoundsexceptfor5whereT203(2)K.T141(2)66 34 InorganicChemistry,Vol.47,No.1,2008 An(III)/Ln(III)BondingComparison Table2. SelectedBondDistances(Å)forM[N(EPPh2)2]3Complexes compd bond distance bond distance differencea U[N(SPPh2)2]3(1) U-N 2.632(2) U-S 2.9956(5) La[N(SPPh2)2]3(2) La-N 2.652(4) La-S 3.0214(11) 0.026(1) Pu[N(SPPh2)2]3(3) Pu-N 2.612(3) Pu-S 2.9782(6) Ce[N(SPPh2)2]3(4) Ce-N 2.637(3) Ce-S 3.0052(6) 0.0270(8) U[N(SePPh2)2]3(5) U-N 2.701(3) U-Se 3.0869(4) La[N(SePPh2)2]3(6) La-N 2.706(3) La-Se 3.1229(3) 0.0360(5) Pu[N(SePPh2)2]3(7) Pu-N 2.668(2) Pu-Se 3.0710(2) Ce[N(SePPh2)2]3(8) Ce-N 2.691(3) Ce-Se 3.1013(3) 0.0303(4) aDifferenceisbetweenAn-EandLn-Ebondlengths. (M ) U, Pu, La, or Ce) with 3 equiv of NH(EPPh ) (E ) 2 2 S, Se) in THF/toluene results in ligand deprotonation and coordination to the metal ion, to afford the neutral M[N(EPPh ) ] (1-8) complexes (eq 1). 2 2 3 Figure 2. Thermal ellipsoid plot (at the 50% probability level) of the structureofPu[N(TePiPr2)2]3(18),withtheHatomsomittedforclarity. Thecomplexes9-17and19haveidenticalconnectivity. in all cases, with 3.770 for [U(N(TePH))] being the largest 223 deviation from the ideal. Similar results were found for the Ce systems,with0.757beingthelargestdeviationfromtheideal0.75 The molecular structures of 1-8 (Figure 1, Table 1a) (fortheTecomplex).SpincontaminationinthePucomplexesis consistofnine-coordinatemetalcentersandanionsthatare more significant than in the U and Ce complexes; however the tridentate through both chalcogen atoms and the nitrogen largest ÆS2æ calculated was 8.865 for [Pu(N(TePH ))], not a 223 atom.Thegeometryaboutthemetalcenterisbestdescribed significantdeviationfromtheideal8.75. asdistortedtricappedtrigonalprismatic.Althoughionicradii 2.3.2ADF.Single-pointcalculationsonoptimizedG03structures are available for nine-coordinate La(III) and Ce(III), none were carried out in ADF. As with G03 the PBE functional was areavailablefornine-coordinateU(III)orPu(III).49Theionic used.TZPzero-orderregularapproximation(ZORA)basissetswere used for each of the f elements together with DZP ZORA basis radiiforsix-coordinateU(III)andLa(III)are1.025and1.032 sets for O, S, Se, P, and N; DZ was used for H. ADF does not Å,respectively,whereasthoseforsix-coordinatePu(III)and have a DZP basis set for Te, so TZP polarization functions were Ce(III)are1.00and1.01Å,respectively.Becausewewish added to the DZ basis. The frozen-core approximation was used. to compare bond distances involving 5f and 4f trivalent A5dcorewasusedforeachactinide;4dforthelanthanidesand cations of similar size, we chose the U(III)/La(III) and Pu- Te, 3d for Se, 2p for S, P, and 1s for O, N. Mulliken overlap (III)/Ce(III) pairs (Table 2). Judging from the limited data populationanalyses47,48werecarriedout. available,49 we believe that the difference in radii for nine 2.3.3.LigandModelsandPointGroupSymmetry.Asnoted coordinationwithinthesepairsremainsessentiallythesame in the Introduction, we have thus far focused the computational asitisforsixcoordination.Asanexample,theionicradius studiesontheexperimentallycharacterizedM[N(EPiPr)] systems. 223 ofCe(IV)increasesby0.27Åongoingfromsixcoordination HowevertheuseoftheiPrgroupsinthecalculationsisextremely to twelve coordination; the corresponding increase in the time-consuming, so, to cut computational cost, we tested two approximationsbysubstitutingiPrforHorMe.Sincewesought radius of U(IV) is 0.28 Å. The salient bond distances for to model the R ) iPr complexes, only six-coordinate complexes comparison are summarized in Table 2. The U-S distance withlocalenergyminimawereconsidered,andwedidnotexamine is2.9956(5)Åin1andisshorterthantheLa-Sdistanceof thepossibilitythataglobalenergyminimumcouldresultinanine- 3.0214(11) in 2 by 0.026(1) Å, a significantly larger coordinatecomplexwithbothEandNcoordinationtothemetal. difference than the difference in ionic radii between U(III) Extensivetests(datanotshownhere)ontheenergies,bondlengths, andLa(III)of0.007Å.Thecorrespondingdifferenceinbond andchargesofthesecomplexesrevealedthatthechoiceofRgroup lengthsis0.0360(5)ÅbetweenaU-Sedistanceof3.0869- does not affect the metal-chalcogen bond lengths or charges to (4) Å in 5 and a La-Se distance of 3.1229(3) Å in 6. anysignificantextent.Wealsotestedthevalidityofidealizingthe Whereas5isadeuterobenzenesolvate,6isatoluenesolvate. geometries to the D symmetry group (with its favorable conse- 3 Weassumethatthedifferenceinbondlengthsisnotaffected quencesforelectronicstructureanalysis),andagainconcludedthat by the difference in solvents. thishaslittleimpactuponthequalityoftheresults.Thusthepresent paperfocusesonstudiesintheD pointgroup. ThecomparisonofbondlengthsbetweenthePu(III)and 3 Ce(III)complexesalsorevealssignificantlyshorteractinide- 3. Results chalcogen bonds relative to lanthanide-chalcogen bonds. 3.1. Syntheses, Structure, and Characterization of The Pu-S bond length in 3 is 2.9782(6) Å compared to M[N(EPPh ) ] Complexes. Treatment of M[N(SiMe ) ] 3.0052(6) Å for Ce-S in 4, a difference of 0.0270(8) Å. 2 2 3 3 2 3 This difference is 0.0303(4) Å in the Se analogue, with a (46) Weinhold,F.;Carpenter,J.E.InTheStructureofSmallMolecules Pu-Se distance in 7 of 3.0710(2) Å and a Ce-Se distance and Ions; Naaman, R., Vager, Z., Eds.; Plenum Press: New York, in8of3.1013(3)Å.TheSe-M-Seanglesareslightlylarger 1988;p227. (47) Politzer,P.;Mulliken,R.S.J.Chem.Phys.1971,55,5135. (48) Grier,D.L.;Streitwieser,A.,Jr.J.Am.Chem.Soc.1982,104,3556. (49) Shannon,R.D.ActaCrystallogr.1976,A32,751. Inorganic Chemistry, Vol. 47, No. 1, 2008 35 Gaunt et al. Table3. 31PNMRShifts(ppm)forM[N(EPR2)2]3Complexes compd 31PNMRshift(ppm) compd 31PNMRshift(ppm) U[N(SePPh2)2]3(5) -722.6 Ce[N(TePiPr2)2]3(19) -10.0 U[N(TePiPr2)2]3(16) -696.7 Ce[N(SePPh2)2]3(8) -8.3 U[N(SPPh2)2]3(1) -680.6 Pu[N(SPiPr2)2]3(11) -1.4 U[N(SePiPr2)2]3(13) -573.9 Ce[N(SPPh2)2]3(4) 4.9 U[N(SPiPr2)2]3(9) -525.1 La[N(TePiPr2)2]3(17) 29.5 Pu[N(TePiPr2)2]3(18) -62.2 La[N(SePPh2)2]3(6) 33.6 Pu[N(SePPh2)2]3(7) -59.2 La[N(SPPh2)2]3(2) 42.6 Pu[N(SPPh2)2]3(3) -47.1 La[N(SePiPr2)2]3(14) 56.8 Pu[N(SePiPr2)2]3(15) -20.1 La[N(SPiPr2)2]3(10) 64.3 than the S-M-S angles, presumably owing to the larger Table4. SelectedBondDistances(Å)forM[N(EPiPr2)2]3Complexesa size of Se compared to S. The [EPNPE] linkage has minor compd bond avdistance difference deviations from planarity with the angle between the PE2 U[N(SPiPr2)2]3(9) U-S 2.854(7) andAlMthEou2gphlanneostrathnegindgirfercotmfo5c.2ustoo6f.0th(cid:176)i.s study, in the PLua[[NN((SSPPiiPPrr22))22]]33((1101)) LPua--SS 22..889129((13)) 0.038(7) M[N(EPPh2)2]3complexes1-8,MiscoordinatedtobothE UCe[N[N(S(SePPiiPPrr22))22]]33((1123)) UCe--SSe 22..986644((72)) 0.045(4) andtoN.Nitrogenisasofterdonoratomthanoxygen,and La[N(SePiPr2)2]3(14) La-Se 3.019(3) 0.055(8) it is of interest to also compare the An-N distances to the Pu[N(SePiPr2)2]3(15) Pu-Se 2.917(4) Ln-Ndistances.TheM-Ndistancesin1-8arestatistically LUa[[NN((TTeePPiPiPrr22)2)2]3]3(1(167)) ULa--TTee 33..126244((23)) 0.060(4) differentinthreeofthefourcomparisons.TheU-Ndistance Pu[N(TePiPr2)2]3(18) Pu-Te 3.123(3) in 1 is shorter than the La-N distance in 2 by 0.020(4) Å, Ce[N(TePiPr2)2]3(19) Ce-Te 3.182(1) 0.059(3) Pu-Nin3shorterthanCe-Nin4by0.025(4)Å,U-Nin aEsd’s associated with the average distances were determined by 5 shorter than La-N in 6 by 0.005(4) Å, and Pu-N in 7 summingthesquaresoftheesdassociatedwitheachofthesixindependent M-Ebondsandtakingthesquarerootofthatvalue. shorter than Ce-N in 8 by 0.023(4) Å. center is best described as distorted trigonal prismatic. La(III)isdiamagnetic(4f0),andcomplexes2and6display SelectedcrystallographicdataareprovidedinTable1b,and resonances at 42.6 and 33.6 ppm, respectively, in the 31P the salient bond distances are summarized in Table 4. For NMRspectra(Table3).Theothercomplexes(1,3-5,7,8) comparativepurposeswehavechosentouseaverageM-E alldisplayparamagenticallyshiftedresonances(Ce(III),4f1; bond distances to identify differences in bonding. In this U(III),5f3;Pu(III),5f5),withtheU(III)complexesdisplaying respect,thefollowingcaveatsarenoted.Compounds9-12 the largest downfield chemical shifts, with a resonance at crystallize in the space group P1h, and compounds 14 and -722.6ppmforU[N(SePPh ) ] (5).Theresonancesforthe 2 2 3 16-19 crystallize in the space group P2 /c. All of these Pu(III) and Ce(III) complexes are shifted to a much lesser 1 complexeshavethreelongandthreeshortM-Ebonds(one extent. The UV/vis/near-IR spectra of the Pu and U longandoneshortbondperligand).Compounds13and15 complexeshaveabsorbancesresultingfromLaporteforbid- both crystallize in the space group C2/c, and because of den 5f-5f transitions and allowed 5f-6d transitions, with symmetry one of the ligands in these complexes has two multipleabsorptionbandsinthe500-1300nmregion.There identicalM-Elengths,whereastheothertwoligandseach are also intense charge-transfer bands below 500 nm. have one short and one long M-E bond. All of the U/La We were unable to isolate the analogous Te donor andPu/Cecomparisonsarebetweenisostructuralcompounds complexes. Treatment of UI (THF) with [Na(tmeda)- 3 4 with the exception of 13 (U[N(SePiPr ) ] in space group {N(TePPh ) }] resulted in TeII[N(TePPh ) ] as the only 2 2 3 2 2 2 2 2 C2/c) and 14 (La[N(SePiPr ) ] in space group P2 /c). In tractableproductandagraypowder,whichwasmostlikely 2 2 3 1 comparing the bond distances between 13 and 14 the fact elemental Te. However, as we describe in the next section, that they are not in the same space group is ignored. replacement of the phenyl rings on the ligands with iPr Compound15(Pu[N(SePiPr ) ] )doesnothavealanthanide groups allows access to the Te donor complexes. 2 2 3 counterpart for comparison because we were unable to 3.2. Syntheses, Structure, and Characterization of crystallize Ce[N(SePiPr ) ] . M[N(EPiPr ) ] Complexes. Treatment of M[N(SiMe ) ] 2 2 3 2 2 3 3 2 3 (M ) U, Pu, La, or Ce) with 3 equiv of NH(EPiPr ) (E ) 2 2 S, Se) in THF or treatment of MI (py) (sol ) py, M ) U, 3 4 Pu; sol ) THF, M ) La, Ce) with 3 equiv of [Na(tmeda)- {N(TePiPr)}]inEtOyieldstheneutralM[N(EPiPr)] (9- 2 2 2 2 2 3 19)complexes(eqs2and3).Wewereunabletoisolatethe Ce[N(SePiPr ) ] complex. We could not isolate a bulk 2 2 3 quantity of Ce[N(SPiPr ) ] to allow spectroscopic charac- 2 2 3 terization,soonlythecrystalstructurewasdetermined.The molecular crystal structures of 9-19 (Figure 2, Table 1b) IntheR)iPrseriesofcompoundsthecrystallographically consist of six-coordinate metal centers and anions that are independent M-E distances frequently differ significantly. bidentate through both chalcogen atoms. The N atoms of We have chosen to average M-E distances for a given theligandsdonotcoordinate.Thegeometryaboutthemetal compound. The resultant differences among average U-E 36 InorganicChemistry,Vol.47,No.1,2008 An(III)/Ln(III)BondingComparison Table5. SelectedBondDistances(Å)fortheModel(Calculated) M[N(EPH2)2]3Complexes compd bond avdistance difference U[N(OPH2)2]3 U-O 2.393 La[N(OPH2)2]3 La-O 2.417 0.024 Pu[N(OPH2)2]3 Pu-O 2.364 Ce[N(OPH2)2]3 Ce-O 2.390 0.026 U[N(SPH2)2]3 U-S 2.849 La[N(SPH2)2]3 La-S 2.916 0.067 Pu[N(SPH2)2]3 Pu-S 2.830 Ce[N(SPH2)2]3 Ce-S 2.890 0.060 U[N(SePH2)2]3 U-Se 2.955 La[N(SePH2)2]3 La-Se 3.027 0.072 Pu[N(SePH2)2]3 Pu-Se 2.932 Ce[N(SePH2)2]3 Ce-Se 2.996 0.064 U[N(TePH2)2]3 U-Te 3.126 La[N(TePH2)2]3 La-Te 3.232 0.106 FPuig,uCree;E3.)ROe,laSti,vSeec,aTlceu)laattetdhero(Mpt-imEiz)efdorgeMom[Ne(tEriPesH.2r)(2M]3-(MO))haLsab,eUen, CPue[[NN((TTeePPHH22))22]]33 PCue--TTee 33..123052 0.067 settozeroforeachmetal. of the diamagnetic La(III) complexes 10 and 14, which vsLa-EandPu-EvsCe-Edistancesarenecessarilyless displayresonancesforthefreeligandinadditiontothemetal accurate than for the R ) Ph series of compounds (which complexes. The UV/vis/near-IR spectra of the Pu and U containonlyoneindependentM-Edistance).Nevertheless, complexeshaveabsorbancesresultingfromLaporteforbid- theresultantdifferencesfortheR)iPrseriesofcompounds den 5f-5f transitions and allowed 5f-6d transitions, with (Table4)showthesametrendsasdothosefortheR )Ph multipleabsorptionbandsinthe500-1300nmregion.There seriesofcompounds(Table2).Specifically,theaverageU-S are also intense charge-transfer bands below 500 nm. distance is 2.854(7) Å in 9 and is shorter than the average 3.3. Density Functional Theory Calculations. 3.3.1. La-S distance of 2.892(1) Å in 10 by 0.038(7) Å. The StructuralData.ThecalculatedM-Ebonddistances,r(M- average U-Se distance of 2.964(7) Å in 13 is shorter than E), for M[N(EPH ) ] (M ) La, U, Pu, Ce; E ) O, S, Se, 2 2 3 theaverageLa-Seof3.019(3)Åin14by0.055(8)Å.The Te)aregiveninTable5.Thecalculatedr(M-E)agreevery average U-Te distance is 3.164(2) Å in 16 and is shorter wellwithexperimentinallcasesforwhichdataareavailable; thantheaverageLa-Teof3.224(3)Åin17by0.060(4)Å. the maximum discrepancy between theory and experiment Moving along the f-element series, we observe significant is ca. 0.04 Å, and the mean absolute difference is less than bond length differences between the Pu(III) and Ce(III) 0.02Åinallcases.AsthechalcogenischangedfromOto complexes.TheaveragePu-Sdistanceof2.819(3)Åin11 Te,r(M-E)lengthenssignificantly,theincreasebeinglargest isshorterthantheaverageCe-Sdistanceof2.864(2)in12 between O and S, followed by a smaller increase from S by 0.045(4) Å. The average Pu-Te distance of 3.123(3) Å throughSetoTe.r(M-O)issimilarforallfourmetals,and in 18 is shorter than the average Ce-Te distance of 3.182- the difference between analogous r(Ln-E) and r(An-E) (1) Å in 19 by 0.059(3) Å. pairs increases down group 16. Figure 3 emphasizes this The E-M-E bite angles are smaller than the angles in pointbynormalizingr(M-O)tozeroforeachofthemetals. thetridentateR-Phcomplexes,reflectingtheabsenceofN Itcanclearlybeseenthatwhereasr(U-E)increasesasthe coordination. As was observed in the R ) Ph complexes, chalcogenbecomesheavier,r(Pu-E)increasesslightlymore theE-M-Ebiteanglesincreaseasthechalcogengroupis steeply and r(Ln-E) increases considerably more steeply. descendedfromStoSetoTeandthesizeofthedonoratom Thus, while r(La-O) is ca. 0.02 Å longer than r(U-O), increases.TheligandsintheR)iPrcomplexes,9-19,are r(La-Te) is ca. 0.11 Å longer than r(U-Te). A similar, twisted to a greater extent than are those in the R ) Ph though less dramatic, pattern is observed for Ce and Pu; complexes. This is likely a result of the greater steric r(Ce-O) is ca. 0.03 Å longer thanr(Pu-O) and r(Ce-Te) hindranceoftheiPrgroupsrelativetothephenylrings,which is ca. 0.07 Å longer than r(Pu-Te). These calculated results in the inability of the N atoms to coordinate to the structuraldatasuggestthatU-EandPu-Ebondingforthe metal. The angles between the ME and MP planes range heavier chalcogens is indeed somewhat different from that 2 2 from21.5to24.5(cid:176) ,comparedtoonly5.2to6.0(cid:176) intheR) intheanalogousLncomplexes.Wealsonotethatwhilethe Ph tridentate complexes. generaltrendofdifferencesbetweenAn-EandLn-Ebond In the 31P NMR spectra (Table 3), the diamagnetic La- lengthsfromthestructuraldataarereplicatedcomputation- (III) (4f0) complexes 10, 14, and 17 display resonances at ally, the calculated differences are slightly larger than the 64.3, 56.8, and 29.5 ppm, respectively. The U(III), Pu(III) experimentally observed differences. In addition the DFT andCe(III)complexesalldisplayparamagneticshifts,with studiespredictasmallerdifferencebetweenPu-EandCe-E thelargestdownfieldshiftobservedforU[N(TePiPr ) ] (16) bondlengthscomparedtothosebetweenU-EandLa-E,a 2 2 3 at-696.7ppm.The31PNMRspectraalsohaveresonances phenomenon, which within experimental errors, was not of small intensity at values for the free ligand suggesting observed from the single-crystal X-ray structural data. thatinsolutionthereissomedissociationordecomposition 3.3.2. Natural Charges and Populations. The natural ofthecomplexes.Thisissupportedbythe1HNMRspectra charges for selected atoms are presented in the Supporting Inorganic Chemistry, Vol. 47, No. 1, 2008 37 Gaunt et al. Information. It is immediately apparent that the charges on the E, N, and P atoms are rather similar for all four metals for a given chalcogen. The principal difference between the complexes comes in the metal charges, which for all E decrease in the orderq >q >q >q . It is noticeable La Ce Pu U that the difference in q for analogous Ln/An pairs is M significantlysmallerforCe/PuthanforLa/U.Forthelatter, q is ca. 13% larger than q in the O system, a difference La U whichincreasesto25%forSandSebeforereducingtoca. 20% for Te. By contrast, the difference in the Ce/Pu compoundsisca.6%forO,risingtoca.10%fortheheavier chalcogens. This suggests that while the metal-chalcogen bond in both the La and Ce compounds is more polar than in their actinide equivalents, this difference in ionicity is larger for the La/U pair than for the Ce/Pu pair. Further evidence for this comes from examination of the charge Figure4. MolecularorbitalenergyleveldiagramsforM[N(EPH2)2]3(M )La(a)andU(b);E)O,S,Se,Te),calculatedintheD3pointgroup. differences between M and E as a function of both metal TheenergyofthelowestunoccupiedorbitalofeachoftheLacomplexes and chalcogen. For La, there is a ca. 36% reduction in q (number53,shownindarkblue)hasbeensettoanenergyof0eV,ashas La - q as E is altered from O to Te. For the other metals, theenergyofthemoststableofthehighestoccupied(5f-based)orbitalsof E(La) theUcomplexes(alsoshownindarkblue).ThemeanenergiesoftheR- the corresponding values are ca. 38% for Ce, ca. 40% for and (cid:226)-spin components of each spatial MO are presented for the U Pu,andca.41%forU.Thus,thedecreaseinionicitydown compounds.Fororbitals35-52,redindicatesa1symmetryMOs,turquoise group 16 is largest for the U compounds and smallest for a2MOs,andblackeMOs. the La compounds, and hence the natural charges reinforce anddorbitals,theactinidecomplexesaremorecovalentthan the conclusions from the calculated and experimental ge- their lanthanide counterparts on account of the greater ometriesthatthebondingintheactinidesystems,particularly involvement of the 5f orbitals over the 4f orbitals. the U complexes, is somewhat different from that in the 3.3.3. Mulliken Overlap Populations. Calculated Mul- lanthanides. liken overlap populations for the target complexes are The natural atomic orbital populations for the metals are presented in the Supporting Information. Two sets of data presented in the Supporting Information. The values given are provided for each metal. The first set is the overlap have been obtained by subtracting the formal values from population between the metal atom and an individual the calculated ones; i.e., they show the enhancement of the chalcogen, while the second set is for the interaction of an populationsabovetheformal.Ineachcasethelatteris2for M3+ center with the trianionic ligand set. Mulliken overlap the s orbitals, 6 for the p, and 0 for the d. The formal f populations can be considered as the number of electrons populationsare0forLa(III),1forCe(III),3forU(III),and covalentlybondingbetweentwoatomsorgroupsofatoms. 5 for Pu(III). It is immediately apparent that the (n - 1)p Both sets of data suggest enhanced covalency in the populationsareessentiallyunalteredfromtheirformalvalues compoundsoftheheavierchalcogensforallfourmetals,in in all cases. By contrast, there are increases of the other agreementwiththeconclusionsfromthenaturalchargeand orbital populations above their formal values, which may population analyses. Both the Ln-E and Ln3+-L 3- data 3 betakenasevidenceoftheinvolvementoftheseorbitalsin forthetwofamiliesoflanthanidecompoundsareverysimilar covalentbondingwiththeligands.Forallfourmetals,thes tooneanother.ComparisonofLaandCewithU,however, populationincreasesasgroup16isdescended,andtheextent revealssignificantlylargeroverlappopulationsintheactinide of this increase is broadly similar in all cases. The d systems, at least for E ) S, Se, and Te, suggesting greater populationsalsoincreasedowngroup16byanamountthat covalency in the U compounds. The Pu data generally lie is generally slightly more significant than for the s. By betweentheLnandUvalues,indicatingthatthebondingin contrast,thefpopulationsdonotchangeverymuchasgroup thePucomplexesisintermediateincovalencybetweenthat 16isdescended.ThereisaslightreductionfromOtoTein in the compounds of the early 4f elements and U. the La and Ce f populations, while those for Pu are very 3.3.4. Molecular Orbital Structure. To test further the similar in all four complexes. For U, there is greater conclusionsdrawnfromthenaturalandMullikenanalyses, variability, with no clear pattern down group 16. we have probed the molecular orbital structure of the La We conclude that the natural populations support the andUcomplexes.MOenergyleveldiagramsforM[N(EPH )] 2 2 3 chargesinfindinggreatercovalencyasgroup16isdescended (E)O,S,Se,Te)aregiveninFigure4for(a)M)Laand for all four metals. This increase in covalency arises from (b) M ) U. To allow the electronic structures to be better increases in metal d and, to a slightly lesser extent, s compared,thediagramshavebeenconstructedbyarbitrarily populations from O to Te. By contrast, there is no such setting the energy of the lowest unoccupied orbital of each increaseinmetalfpopulationdowngroup16,althoughitis of the La complexes to an energy of 0 eV. This orbital noticeablethatthefpopulationsfortheactinidesarelarger (number53)ispredominantly(>95%)4fincharacterinall than for the lanthanides. This suggests that while increases fourcases.FortheUsystems,thehighestoccupiedorbitals in covalency down group 16 are a function of the metal s containtheanticipatedthree5felectrons,andtheenergyof 38 InorganicChemistry,Vol.47,No.1,2008
Description: