Ryerson University Digital Commons @ Ryerson Theses and dissertations 1-1-2012 Experimental And Numerical Study Of Single And Multiple Imapcts Of Angular particles On Ductile Metals Mahdi Takaffoli Ryerson University Follow this and additional works at:http://digitalcommons.ryerson.ca/dissertations Part of theMechanical Engineering Commons Recommended Citation Takaffoli, Mahdi, "Experimental And Numerical Study Of Single And Multiple Imapcts Of Angular particles On Ductile Metals" (2012).Theses and dissertations.Paper 1724. This Dissertation is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by an authorized administrator of Digital Commons @ Ryerson. For more information, please [email protected]. EXPERIMENTAL AND NUMERICAL STUDY OF SINGLE AND MULTIPLE IMPACTS OF ANGULAR PARTICLES ON DUCTILE METALS by Mahdi Takaffoli MSc, 2007, Tehran University, Iran BSc, 2005, Iran University of Science and Technology, Iran A dissertation presented to Ryerson University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the program of Mechanical and Industrial Engineering Toronto, Ontario, Canada, 2012 © Mahdi Takaffoli 2012 I hereby declare that I am the sole author of this dissertation. This is a true copy of the dissertation, including any required final revisions, as accepted by my examiners. I authorize Ryerson University to lend this dissertation to other institutions or individuals for the purpose of scholarly research. I further authorize Ryerson University to reproduce this dissertation by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. I understand that my dissertation may be made electronically available to the public. ii EXPERIMENTAL AND NUMERICAL STUDY OF SINGLE AND MULTIPLE IMPACTS OF ANGULAR PARTICLES ON DUCTILE METALS Mahdi Takaffoli 2012 Ph.D. Department of Mechanical and Industrial Engineering Ryerson University Abstract Solid particle erosion occurs when small high speed particles impact surfaces. It can be either destructive such as in the erosion of oil pipelines by corrosion byproducts, or constructive such as in abrasive jet machining processes. Two dimensional finite element (FE) models of single rhomboid particles impact on a copper target were developed using two different techniques to deal with the problem of element distortion: (i) element deletion, and (ii) remeshing. It was found that the chip formation and the material pile-up, two phenomena that cannot be simulated using a previously developed rigid- plastic model, could be simulated using the FE models, resulting in a good agreement with experiments performed using a gas gun. However, remeshing in conjunction with a failure model caused numerical instabilities. The element deletion approach also induced errors in mass loss due to the removal of distorted elements. To address the limitations of the FE approach, smoothed particle hydrodynamics (SPH) which can better accommodate large deformations, was used in the simulation of the impact of single rhomboid particles on an aluminum alloy target. With appropriate constitutive and failure parameters, SPH was demonstrated to be suitable for simulating all of the relevant damage phenomena observed during impact experiments. A new methodology was developed for generating realistic three dimensional particle geometries based on measurements of the size and shape parameter distributions for a sample of iii 150 m nominal diameter angular aluminum oxide powder. The FE models of these generated particles were implemented in a SPH/FE model to simulate non-overlapping particle impacts. It was shown that the simulated particles produced distributions of crater and crater lip dimensions that agreed well with those measured from particle blasting experiments. Finally, a numerical model for simulating overlapping impacts of angular particles was developed and compared to experimental multi-particle erosion tests, with good agreement. An investigation of the simulated trajectory of the impacting particles revealed various erosion mechanisms such as the micromachining of chips, the ploughing of craters, and the formation, forging and knocking off crater lips which were consistent with previously noted ductile solid particle erosion mechanisms in the literature. iv Acknowledgements I would like to express my very great appreciation to my supervisor, Professor Marcello Papini whose guidance, expertise and encouragement was greatly helpful to me throughout my PhD research. All the meetings and discussions I had with you left me with passion and great ideas to address the challenges of my dissertation. I will forever be thankful to you for what I have learned in the past five years. I would also like to thank my supervisory committee, Dr. Daolun Chen and Dr. Donatus Oguamanam, for their suggestions during my Ph.D. candidacy exam. My grateful thanks are also extended to Professor Khaled Sennah and Professor William Altenhof for agreeing to be on my examination committee. I also wish to acknowledge the technical staff of our department, Misters Joseph Amankrah, Alan Machin, Devin Ostrom, Qiang Li and Chao Ma whose support and assistance were greatly helpful to me throughout my dissertation. Very special thanks to the Natural Sciences and Engineering Council of Canada (NSERC), the Canada Research Chairs Program, the Ontario Ministry of Training, Colleges and Universities, the Ryerson University School of Graduate Studies and the Department of Mechanical and Industrial Engineering for their financial support. Finally my warmest gratitude to my mother, father and three sisters for all the caring and support provided to me over the phone or in person when I visited home during the time of my PhD. This dissertation is dedicated to them. v Table of Contents 2B Abstract ......................................................................................................................................... iii Acknowledgements ....................................................................................................................... v Table of Contents ......................................................................................................................... vi Nomenclature ................................................................................................................................ x List of Tables .............................................................................................................................. xiii List of Figures ............................................................................................................................. xiv List of Appendices .................................................................................................................... xviii Chapter 1 Introduction................................................................................................................. 1 1.1 Background and motivation ...................................................................................... 1 1.2 Objectives ................................................................................................................. 2 1.3 Literature review ....................................................................................................... 3 1.3.1 Modeling single particle impact of angular particles ......................................... 3 1.3.2 Representative models of erosive particles ........................................................ 6 1.3.3 Numerical modeling of solid particle erosion of ductile metals ........................ 7 1.3.4 Material removal mechanisms in ductile metals .............................................. 10 1.4 Dissertation outline ................................................................................................. 11 Chapter 2 Lagrangian Finite Element Modeling of Single Particle Impacts ........................ 12 2.1 Introduction ............................................................................................................. 12 2.2 Experiments ............................................................................................................ 13 2.3 Finite element modeling ......................................................................................... 16 2.3.1 Material model ................................................................................................. 17 2.3.2 Contact model .................................................................................................. 19 vi 2.3.3 Element deletion and remeshing ...................................................................... 20 2.4 Rigid-plastic Model ................................................................................................ 20 2.5 Results and discussion ............................................................................................ 21 2.6 Summary and conclusions ...................................................................................... 29 Chapter 3 Smoothed Particle Hydrodynamics Modeling of Single Particle Impact ............ 31 3.1 Introduction ............................................................................................................. 31 3.2 The smoothed particle hydrodynamics (SPH) method ........................................... 31 3.3 Experiments ............................................................................................................ 33 3.4 Model description ................................................................................................... 36 3.4.1 Model Geometry and Boundary Conditions .................................................... 36 3.4.2 Contact definition............................................................................................. 37 3.4.3 Constitutive equation ....................................................................................... 38 3.4.4 Strain rate dependency ..................................................................................... 40 3.4.5 Failure model ................................................................................................... 40 3.5 Results and discussion ............................................................................................ 41 3.5.1 Effect of impact angle and initial orientation on impact crater ....................... 41 3.5.2 Effect of strain rate dependency model ........................................................... 42 3.5.3 Comparison of SPH model to experiments ...................................................... 42 3.5.4 The effect of tensile instability on the SPH results .......................................... 49 3.6 Summary and conclusions ...................................................................................... 50 Chapter 4 Three Dimensional Representation of Abrasive Particle Samples for Numerical Modeling ...................................................................................................................................... 52 4.1. Introduction ............................................................................................................ 52 4.2 Particle Shape Characterization .............................................................................. 52 4.3 Particle Modeling .................................................................................................... 56 vii 4.4 Summary and Conclusions ..................................................................................... 57 Chapter 5 Numerical Simulation of Non-Coincident Impacts of 150-m Alumina Particles on Al6061-T6 ............................................................................................................................... 59 5.1 Introduction ............................................................................................................. 59 5.2 Experiments ............................................................................................................ 59 5.2.1 Particle Impact Experiments ............................................................................ 59 5.2.2 Particle Velocity Measurement ........................................................................ 60 5.3 Modeling ................................................................................................................. 63 5.3.1 Implementation of representative particles in a FE/SPH model ...................... 63 5.3.2 Target Modeling............................................................................................... 64 5.4 Results and discussion ............................................................................................ 66 5.4.1 Crater and pile-up size distributions ................................................................ 66 5.4.2 Normal Incidence ............................................................................................. 66 5.4.3 Oblique Incidence ............................................................................................ 69 5.4.4 Material removal mechanisms ......................................................................... 73 5.5 Summary and conclusions ...................................................................................... 79 Chapter 6 Numerical Simulation of Multiple Overlapping Impact of Alumina Particles on Al6061-T6..................................................................................................................................... 80 6.1 Introduction ............................................................................................................. 80 6.2 Experiments ............................................................................................................ 80 6.3 Model Description .................................................................................................. 80 6.4 Analysis of simulated and experimental eroded surfaces ....................................... 82 6.5 Results and discussion ............................................................................................ 82 6.5.1 Blasted surface topography .............................................................................. 82 6.5.2 Predicted erosion at various angles of attack ................................................... 84 6.5.3 Simulated erosion mechanisms ........................................................................ 87 viii 6.5.4 The effect of thermal softening on material removal ....................................... 95 6.6 Summary and Conclusions ..................................................................................... 95 Chapter 7 Summary and Conclusions ...................................................................................... 97 7.1 Summary ................................................................................................................. 97 7.2 Conclusions ............................................................................................................. 98 7.3 Contributions........................................................................................................... 99 7.4 Recommendations for Future Work...................................................................... 100 Appendices ................................................................................................................................. 103 A.1 A MATLAB Code to Generate a Representative Model of Erodent Powders .... 103 A.2 An ANSYS Parametric Design Language (APDL) Code to Construct FE Model of a Sample of Representative Particles .......................................................................... 108 A.3 Evidence for the Ability of Thermal Softening to be Implemented into a Structural Analysis Using the Johnson Cook Material Model .................................................... 119 A.3.1 LS-DYNA Manual ........................................................................................ 119 A.3.2 Evidence from papers in the literature .......................................................... 120 A.3.3 Taylor bar impact FE simulations ................................................................. 122 A.3.4 Conclusion .................................................................................................... 130 References .................................................................................................................................. 131 ix
Description: