EXPERIMENTAL AERODYNAMIC ANALYSIS OF A PLUG NOZZLE FOR SUPERSONIC BUSINESS JET APPLICATION A Thesis Submitted to the Faculty of Purdue University by John L. Tapee In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautics and Astronautics August 2009 Purdue University West Lafayette, Indiana ii ACKNOWLEDGMENTS I would first like to thank professor John Sullivan for his efforts as my advisor during my time in graduate school. His patience, encouragement, and guidance have been instrumental in my success, and I am confident I am a far better engineer because of him. My thanks also extends to the other members of my committee, professors Stephen Heister and Gregory Blaisdell, for their time and support. I have certainly appreciated the involvement of Scott Meyer, whose expertise in all things test-related was invaluable. I cannot thank my fellow grad students Alex Sandroni, Yu Matsutomi, and Chase Cummings enough for their friendship, their hard work, andtheirlongnightsthattheysacrificedinordertomakemytestsareality. Last, but most certainly not least, I would like to thank Tim Conners and Thomas Wayman of the Gulfstream Aerospace Corporation for their heavy involvement with my research. Theirknowledge, passion, andexperiencewasinvaluable, andtherespecttheyshowed towards me as only a grad student has made a lifetime impact. iii TABLE OF CONTENTS Page LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Plug Nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Gulfstream High-Flow Bypass Concept . . . . . . . . . . . . . . . . 7 1.3 Research Objectives & Overview . . . . . . . . . . . . . . . . . . . . 9 2 Test Model Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Facility Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Model Design Overview . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Differences from Gulfstream Geometry . . . . . . . . . . . . . . . . 15 2.4 Material Selection & Sizing . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6 Strut Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Instrumentation & Visualization . . . . . . . . . . . . . . . . . . . . . . . 24 3.1 Static Pressure Taps . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 High-Frequency Sensors . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 HF Pressure Transducers . . . . . . . . . . . . . . . . . . . . 29 3.2.2 Accelerometers . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.3 HF Data Processing . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Schlieren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 Shadowgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.1 Shadowgraph Image Processing . . . . . . . . . . . . . . . . 38 3.5 Tip Vibration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 CFD Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1 Grid and Setup Details . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 iv Page 5.1 Sample Case Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.1.1 Case #1: Cold Flow, NPR 3.73 . . . . . . . . . . . . . . . . 55 5.1.2 Case #2: Cold Flow, NPR 1.59 . . . . . . . . . . . . . . . . 59 5.1.3 Case #3: Hot Fire, NPR 2.50 . . . . . . . . . . . . . . . . . 63 5.1.4 Case #4: Hot Fire, NPR 6.12 . . . . . . . . . . . . . . . . . 68 5.2 Detailed Comparisons & Analysis . . . . . . . . . . . . . . . . . . . 71 5.2.1 Shock Structure . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2.2 Flow Visualization . . . . . . . . . . . . . . . . . . . . . . . 74 5.2.3 Steady-State Pressures . . . . . . . . . . . . . . . . . . . . . 86 5.2.4 Dynamic Pressures . . . . . . . . . . . . . . . . . . . . . . . 92 5.2.5 Accelerometers . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.6 Flow Structure Jump . . . . . . . . . . . . . . . . . . . . . . 97 6 Conclusion & Recommendations . . . . . . . . . . . . . . . . . . . . . . . 103 LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 APPENDICES A Test Data & Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 B Part Drawings (organized alphabetically) . . . . . . . . . . . . . . . . . . 181 C Schlieren & Shadowgraph Apparatus . . . . . . . . . . . . . . . . . . . . 203 D Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 D.1 Static Pressure Transducers . . . . . . . . . . . . . . . . . . . . . . 208 D.2 Dynamic Pressure Transducers . . . . . . . . . . . . . . . . . . . . . 211 E Tip Tracking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 v LIST OF TABLES Table Page 2.1 Designed Maximum Rig Capabilities . . . . . . . . . . . . . . . . . . . 12 5.1 Selected Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 A.1 List of Successful Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 vi LIST OF FIGURES Figure Page 1.1 Diagram of Full-Length Plug Nozzle Flow . . . . . . . . . . . . . . . 3 1.2 Wall Pressure of Plug and C-D Nozzle . . . . . . . . . . . . . . . . . 4 1.3 Diagram of Truncated Plug Nozzle Flow . . . . . . . . . . . . . . . . 5 1.4 Schlieren & Shadowgraph Images of Conical Plugs . . . . . . . . . . 6 1.5 Pressure Distribution Along Full-Length Conical Plug (no freestream) 7 1.6 Gulfstream High-Flow Bypass Concept . . . . . . . . . . . . . . . . . 8 2.1 Test Model Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Nozzle Test Facility (the “Rig”) . . . . . . . . . . . . . . . . . . . . . 11 2.3 Total Pressure & Temperature Rakes . . . . . . . . . . . . . . . . . . 13 2.4 Test Model Cutaway View . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Gulfstream High-Flow Bypass Nozzle . . . . . . . . . . . . . . . . . . 15 2.6 Rear Face of Tay Engine . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.7 Thermal Stress Alleviation Design Aspects . . . . . . . . . . . . . . . 19 2.8 Quad-strut Arrangement . . . . . . . . . . . . . . . . . . . . . . . . 21 2.9 Strut Cross Section Comparison . . . . . . . . . . . . . . . . . . . . 22 2.10 XFOIL Analysis of Extended Airfoil . . . . . . . . . . . . . . . . . . 23 3.1 Installed Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Static Pressure Tap and HF Transducer Layout . . . . . . . . . . . . 27 3.3 Instrumentation Layout, Angle Reference . . . . . . . . . . . . . . . 28 3.4 Comparison of Time-Domain Signal and Power Spectral Density Esti- mate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5 Schlieren Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6 Background Noise in Schlieren Image . . . . . . . . . . . . . . . . . . 34 3.7 Glass Opacity when viewed by Schlieren . . . . . . . . . . . . . . . . 35 vii Figure Page 3.8 Glass Shroud Ray Trace . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.9 Shadowgraph Schematic . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.10 Sample of Shadowgraph Image Processing Technique . . . . . . . . . 38 3.11 Tip Tracking Method #1 . . . . . . . . . . . . . . . . . . . . . . . . 40 3.12 Tip Tracking Method #2 . . . . . . . . . . . . . . . . . . . . . . . . 40 3.13 Tip Vibration Power Spectra – Analysis Method Comparison . . . . 41 3.14 Vertical Tip Deflection for Varying NPRs . . . . . . . . . . . . . . . 42 3.15 Plug Thermal Growth Shown by Tip Tracking Analysis . . . . . . . 43 4.1 CFD Grid Near Model . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Mach Number Contours from CFD (Hot, NPR 6.23) . . . . . . . . . 47 4.3 Static Pressure Distribution from CFD (Hot, NPR 6.23) . . . . . . . 48 4.4 Static Temperature Distribution from CFD (Hot, NPR 6.23) . . . . . 49 4.5 Mach Contours with Wall Static Pressure Distributions fromCFD (Hot, NPR 1.60) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6 Sizing Comparison – Initial and Final Cross Sections . . . . . . . . . 52 5.1 Histogram of Test Case NPRs . . . . . . . . . . . . . . . . . . . . . . 54 5.2 Schlieren Image, Case #1 . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 Pressure Distribution, Case #1 . . . . . . . . . . . . . . . . . . . . . 57 5.4 Dynamic Pressure Power Spectra, Case #1 . . . . . . . . . . . . . . 59 5.5 Shadowgraph Image Sequence, Case #2 . . . . . . . . . . . . . . . . 60 5.6 Pressure Distribution, Case #2 . . . . . . . . . . . . . . . . . . . . . 62 5.7 Dynamic Pressure Power Spectra, Case #2 . . . . . . . . . . . . . . 63 5.8 Shadowgraph Image, Case #3 . . . . . . . . . . . . . . . . . . . . . . 64 5.9 Schlieren Image, Case #3 . . . . . . . . . . . . . . . . . . . . . . . . 65 5.10 Pressure Distribution, Case #3 . . . . . . . . . . . . . . . . . . . . . 66 5.11 Dynamic Pressure Power Spectra, Case #3 . . . . . . . . . . . . . . 67 5.12 Schlieren Image, Case #4 . . . . . . . . . . . . . . . . . . . . . . . . 68 5.13 Pressure Distribution, Case #4 . . . . . . . . . . . . . . . . . . . . . 69 viii Figure Page 5.14 Dynamic Pressure Power Spectra, Case #4 . . . . . . . . . . . . . . 70 5.15 Shock Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.16 Schlieren Image Comparison, Cold Flow . . . . . . . . . . . . . . . . 75 5.17 Schlieren Image Comparison, Hot Fire . . . . . . . . . . . . . . . . . 77 5.18 Shadowgraph Image Comparison . . . . . . . . . . . . . . . . . . . . 79 5.19 Experimental and Computed Schlieren Comparison at Low NPR . . 81 5.20 High Speed Schlieren, 6000 fps (Cold Flow, NPR 2.11) . . . . . . . . 84 5.21 Comparison of Shock-Movement Frequency – Pressure Transducers v. High Speed Schlieren . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.22 Possible Mixing Layer Shown with Vertical Knife-Edge . . . . . . . . 85 5.23 Experimental Pressure Distribution Comparison, Plug Surface . . . . 86 5.24 Experimental Pressure Distribution Comparison, Shroud Surface . . 87 5.25 Flow Structure at Low NPRs . . . . . . . . . . . . . . . . . . . . . . 89 5.26 CFD Pressure Distribution Comparison, Plug Surface . . . . . . . . 90 5.27 CFD Pressure Distribution Comparison, Shroud Surface . . . . . . . 91 5.28 Dynamic Pressure Power Spectra Comparison, Cold Flow . . . . . . 93 5.29 NPR Dependency of Dominant Pressure Fluctuation Frequency . . . 94 5.30 Dynamic Pressure Power Spectra Comparison, Hot Fires . . . . . . . 95 5.31 Vibration Power Spectra (Accelerometers) for Full NPR Range . . . 96 5.32 Schlieren Image Sequence Showing Flow Structure Jump at NPR 2.05 98 5.33 Shadowgraph Image Sequence Showing Flow Structure Jump at NPR 2.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.34 Pressure Distributions Before and After Flow Jump . . . . . . . . . . 100 5.35 Aft Plug Tap Time History – Cold Flow, NPR 2.04 . . . . . . . . . . 101 5.36 Aft Shroud Tap Time History – Cold Flow, NPR 2.04 . . . . . . . . 102 6.1 GAC Shroud Effect on Standard Plug Nozzle at Low NPR . . . . . . 105 A.1 Cold Flow, NPR 1.26 – Static Pressure Distribution . . . . . . . . . 112 A.2 Cold Flow, NPR 1.26 – Dynamic Pressure Power Spectra . . . . . . 112 A.3 Cold Flow, NPR 1.40 – Static Pressure Distribution . . . . . . . . . 113 ix Figure Page A.4 Cold Flow, NPR 1.40 – Dynamic Pressure Power Spectra . . . . . . 113 A.5 Cold Flow, NPR 1.59 – Static Pressure Distribution . . . . . . . . . 114 A.6 Cold Flow, NPR 1.59 – Dynamic Pressure Power Spectra . . . . . . 114 A.7 Cold Flow, NPR 1.76 – Schlieren Image, ∂ρ/∂x . . . . . . . . . . . . 115 A.8 Cold Flow, NPR 1.76 – Static Pressure Distribution . . . . . . . . . 115 A.9 Cold Flow, NPR 1.76 – Dynamic Pressure Power Spectra . . . . . . 116 A.10 Cold Flow, NPR 1.93 – Schlieren Image, ∂ρ/∂x . . . . . . . . . . . . 116 A.11 Cold Flow, NPR 1.93 – Static Pressure Distribution . . . . . . . . . 117 A.12 Cold Flow, NPR 1.93 – Dynamic Pressure Power Spectra . . . . . . 117 A.13 Cold Flow, NPR 2.04 – Schlieren Image @ 75 sec, ∂ρ/∂x . . . . . . . 118 A.14 Cold Flow, NPR 2.04 – Static Pressure Distribution @ 60 sec . . . . 118 A.15 Cold Flow, NPR 2.04 – Static Pressure Distribution @ 75 sec . . . . 119 A.16 Cold Flow, NPR 2.04 – Dynamic Pressure Power Spectra . . . . . . 119 A.17 Cold Flow, NPR 2.11 – Schlieren Image @ 58 sec, ∂ρ/∂x . . . . . . . 120 A.18 Cold Flow, NPR 2.11 – Static Pressure Distribution @ 52 sec . . . . 120 A.19 Cold Flow, NPR 2.11 – Static Pressure Distribution @ 58 sec . . . . 121 A.20 Cold Flow, NPR 2.11 – Dynamic Pressure Power Spectra . . . . . . 121 A.21 Cold Flow, NPR 2.18 – Schlieren Image, ∂ρ/∂x . . . . . . . . . . . . 122 A.22 Cold Flow, NPR 2.18 – Static Pressure Distribution . . . . . . . . . 122 A.23 Cold Flow, NPR 2.18 – Dynamic Pressure Power Spectra . . . . . . 123 A.24 Cold Flow, NPR 2.23 – Schlieren Image, ∂ρ/∂x . . . . . . . . . . . . 123 A.25 Cold Flow, NPR 2.23 – Static Pressure Distribution . . . . . . . . . 124 A.26 Cold Flow, NPR 2.23 – Dynamic Pressure Power Spectra . . . . . . 124 A.27 Cold Flow, NPR 2.56 – Schlieren Image, ∂ρ/∂x . . . . . . . . . . . . 125 A.28 Cold Flow, NPR 2.56 – Static Pressure Distribution . . . . . . . . . 125 A.29 Cold Flow, NPR 2.56 – Dynamic Pressure Power Spectra . . . . . . 126 A.30 Cold Flow, NPR 2.59 – Schlieren Image, ∂ρ/∂x . . . . . . . . . . . . 126 A.31 Cold Flow, NPR 2.59 – Static Pressure Distribution . . . . . . . . . 127 x Figure Page A.32 Cold Flow, NPR 2.59 – Dynamic Pressure Power Spectra . . . . . . 127 A.33 Cold Flow, NPR 3.06 – Schlieren Image, ∂ρ/∂x . . . . . . . . . . . . 128 A.34 Cold Flow, NPR 3.06 – Static Pressure Distribution . . . . . . . . . 128 A.35 Cold Flow, NPR 3.06 – Dynamic Pressure Power Spectra . . . . . . 129 A.36 Cold Flow, NPR 3.20 – Schlieren Image, ∂ρ/∂x . . . . . . . . . . . . 129 A.37 Cold Flow, NPR 3.20 – Static Pressure Distribution . . . . . . . . . 130 A.38 Cold Flow, NPR 3.20 – Dynamic Pressure Power Spectra . . . . . . 130 A.39 Cold Flow, NPR 3.73 – Schlieren Image, ∂ρ/∂x . . . . . . . . . . . . 131 A.40 Cold Flow, NPR 3.73 – Static Pressure Distribution . . . . . . . . . 131 A.41 Cold Flow, NPR 3.73 – Dynamic Pressure Power Spectra . . . . . . 132 A.42 Cold Flow, NPR 4.01 – Schlieren Image, ∂ρ/∂x . . . . . . . . . . . . 132 A.43 Cold Flow, NPR 4.01 – Static Pressure Distribution . . . . . . . . . 133 A.44 Cold Flow, NPR 4.01 – Dynamic Pressure Power Spectra . . . . . . 133 A.45 Cold Flow, NPR 4.61 – Schlieren Image, ∂ρ/∂x . . . . . . . . . . . . 134 A.46 Cold Flow, NPR 4.61 – Static Pressure Distribution . . . . . . . . . 134 A.47 Cold Flow, NPR 4.61 – Dynamic Pressure Power Spectra . . . . . . 135 A.48 Cold Flow, NPR 5.01 – Schlieren Image, ∂ρ/∂x . . . . . . . . . . . . 135 A.49 Cold Flow, NPR 5.01 – Static Pressure Distribution . . . . . . . . . 136 A.50 Cold Flow, NPR 5.01 – Dynamic Pressure Power Spectra . . . . . . 136 A.51 Cold Flow, NPR 5.45 – Schlieren Image, ∂ρ/∂x . . . . . . . . . . . . 137 A.52 Cold Flow, NPR 5.45 – Static Pressure Distribution . . . . . . . . . 137 A.53 Cold Flow, NPR 5.45 – Dynamic Pressure Power Spectra . . . . . . 138 A.54 Cold Flow, NPR 5.75 – Schlieren Image, ∂ρ/∂x . . . . . . . . . . . . 138 A.55 Cold Flow, NPR 5.75 – Static Pressure Distribution . . . . . . . . . 139 A.56 Cold Flow, NPR 5.75 – Dynamic Pressure Power Spectra . . . . . . 139 A.57 Hot Flow, NPR 1.77 – Static Pressure Distribution . . . . . . . . . . 140 A.58 Hot Flow, NPR 1.77 – Dynamic Pressure Power Spectra . . . . . . . 140 A.59 Hot Flow, NPR 2.05 – Static Pressure Distribution . . . . . . . . . . 141
Description: