ebook img

EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II PDF

503 Pages·2013·22.819 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II

Advances in Intelligent Systems and Computing 175 Editor-in-Chief Prof.JanuszKacprzyk SystemsResearchInstitute PolishAcademyofSciences ul.Newelska6 01-447Warsaw Poland E-mail:[email protected] Forfurthervolumes: http://www.springer.com/series/11156 Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral, and Pierrick Legrand (Eds.) EVOLVE – A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II ABC Editors Dr.OliverSchütze Dr.PascalBouvry CINVESTAV-IPN FacultyofSciences,Technology Depto.deIngenieríaEléctrica andCommunication SeccióndeComputación UniversityofLuxembourg MexicoCity ComputerScienceandCommunication Mexico Group Luxembourg Dr.CarlosA.CoelloCoello CINVESTAV-IPN Dr.PierreDelMoral Depto.deComputación BordeauxMathematicalInstitute MexicoCity UniversitéBordeauxI Mexico Talencecedex France Dr.Alexandru-AdrianTantar UniversityofLuxembourg Dr.PierrickLegrand ComputerScienceandCommunications UniversitéBordeaux2,BâtimentLeyteire ResearchUnit URFSciencesetModelisation Luxembourg Bordeaux France Dr.EmiliaTantar UniversityofLuxembourg ComputerScienceandCommunications ResearchUnit Luxembourg ISSN2194-5357 e-ISSN2194-5365 ISBN978-3-642-31518-3 e-ISBN978-3-642-31519-0 DOI10.1007/978-3-642-31519-0 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012940858 (cid:2)c Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The massive use and large applicability spectrum of evolutionary algorithms for real-lifeapplicationsdeterminedtheneedofestablishingsolidtheoreticalgrounds. Onlytoofferoneexample,onemayconsidermathematicalobjectsthataresome- timesdifficultand/orcostlyto calculate.Atthe same time,acknowledgednew re- sultsshowthatevolutionarycomputationcanprovideinsomecasesgoodandfast estimatorsofsuchquantities.Similarly,thehandlingoflargequantitiesofdatamay requiretheuseofdistributedenvironmentswheretheprobabilityoffailureandthe stabilityofthealgorithmsmayneedtobeaddressed.Whatismore,commonprac- ticeconfirmsinmanycasesthattheory-basedresultshavetheadvantageofensuring performanceguaranteefactorsforevolutionaryalgorithmsinareasasdiverseasop- timization,bio-informaticsorrobotics. The aim of the EVOLVEisto build a bridgebetweenprobability,statistics, set oriented numerics and evolutionary computing, as to identify new common and challenging research aspects. The conference is also intended to foster a grow- ing interest for robust and efficient methodswith a sound theoreticalbackground. EVOLVEisintendedtounifytheory-inspiredmethodsandcutting-edgetechniques ensuring performance guarantee factors. By gathering researchers with different backgrounds,rangingfromcomputersciencetomathematics,statisticsandphysics, tonamejustafew,aunifiedviewandvocabularycanemergewherethetheoretical advancementsmayechoindifferentdomains. Summarizing,theEVOLVEfocusesonchallengingaspectsarisingatthepassage from theory to new paradigms and aims to provide a unified view while raising questionsrelatedtoreliability,performanceguaranteesandmodeling. ThisbookcontainstheproceedingsofEVOLVE2012,organizedasaninterna- tionalconferenceforthefirsttime,afterpreviouseditionswhenitfollowedawork- shop format. The EVOLVE series started in 2011 with an internationalworkshop heldattheBourglinsterCastleinLuxembourg,whilein2010,theoriginatingevent, Workshop on EvolutionaryAlgorithms- New Challenges in Theory and Practice, wasorganizedinBordeaux.TheEVOLVE2012hasbeenhostedbytheComputer ScienceDepartmentoftheCINVESTAV-IPN,inMexicoCity,Mexico. Thisbookconsistsoftheacceptedfull-lengthpapersthatweresubmittedtothe EVOLVE2012andthatwerepeer-reviewedbyaninternationalprogramcommittee. For convenience of the reader we have divided the 32 papers into 8 main parts representingdifferentresearchareaswithinthescopeoftheEVOLVE. VI Preface Part I consists of two invited papers coming from Keynote Speakers of the EVOLVE 2012. The first paper, by Jian-Qiao Sun, deals with the control of non- linear dynamicsystems with the cellmappingmethod.The secondpaper,by Jose Blanchetetal.,isaboutamethodforestimatingthequasi-stationarydistributionof variousparticleprocesses. In Part II, a group of papers is presented dealing with genetic programming. These contributions come from a special session organized by Leonardo Trujillo andEdgarGalvan. In Part III, a collection of papers is given that contribute to the field of evo- lutionary multi-objective optimization. These papers come from a special session organizedbyGu¨nterRudolphandHeikeTrautmann. Part IV contains two papers dealing with combinatorialoptimization. The first onepresentsahyperheuristicapproachforguidingenumerationinconstraintsolv- ing,andthesecondoneproposesasimulatedannealingimplementationforfinding near-optimalsolutionsfortheMaximumParsimonyproblem. PartVcontainsonecontributiontothefieldofprobabilisticmodelingandopti- mizationforemergingnetworks,comingfromaspecialsessionorganizedbyJian- guoDingandXinhuiWang. InPartVI,aselectionofresearchworksonhybridprobabilisticmodelsforreal parameter optimization and their applications are presented. These papers come fromaspecialsessionorganizedbyArturoHerna´ndez-Aguirre. In Part VII, a group of papers contributingto the field of evolutionarycompu- tation for vision, graphics, and robotics are presented. These works come from a specialsessionorganizedbyGustavoOlagueandHumbertoSossa. Finally, Part VIII presents a selection of contributed papers describing the ap- plicationofbio-inspiredmetaheuristicstorealproblemsofindustrialandscientific researchanddevelopment.Thesepaperscomefromaspecialsessionorganizedby AndrewLewisandMarcusRandall. We would like to expressourgratitudeto all the invited speakersto acceptour invitationandtogiveanoutstandingpresentationattheEVOLVE2012.Further,we wouldliketothankthechairsofthespecialsessions,themembersoftheprogram committee,andtheauthorswhohavesubmitteda contributiontotheevent,which allowed to constitute this book and which allowed to make the EVOLVE 2012 a success. Finally,we gratefullythankthesponsorsoftheeventandourinstitutions whichhelpedustorealizeourprojects. MexicoCity,Luxembourg,andBordeaux, OliverSchu¨tze August2012 CarlosA.CoelloCoello Alexandru-AdrianTantar EmiliaTantar PascalBouvry PierredelMoral PierrickLegrand Organization Conference General Chairs OliverSchu¨tze CINVESTAV-IPN,Mexico Alexandru-AdrianTantar UniversityofLuxembourg,Luxembourg EmiliaTantar UniversityofLuxembourg,Luxembourg PascalBouvry UniversityofLuxembourg,Luxembourg PierredelMoral INRIABordeaux-SudOuest,France PierrickLegrand UniversityofBordeaux2,France AdvisoryBoard EnriqueAlba UniversityofMa´laga,Spain Franc¸oisCaron INRIABordeauxSud-Ouest,France Fre´de´ricCe´rou INRIARennesBretagneAtlantique,France CarlosA.CoelloCoello CINVESTAV-IPN,Me´xico MichaelDellnitz UniversityofPaderborn,Germany Fre´de´ricGuinand UniversityofLeHavre,France ArnaudGuyader Universite´Rennes2,INRIARennes BretagneAtlantique,France ArturoHernandez CIMAT,Me´xico Gu¨nterRudolph TUDortmundUniversity,Germany MarcSchoenauer INRIASaclay-Ile-de-France, UniversityParisSud,France FranciszekSeredynski PolishAcademyofSciences,Warsaw,Poland El-GhazaliTalbi Polytech’Lille,UniversityofLille1,France MarcoTomassini UniversityofLausanne,Switzerland MassimilianoVasile UniversityofStrathclyde,Scotland Programm Committee NicolaBeume TUDortmundUniversity,Germany PeterA.N.Bosman CWI,TheNetherlands JairCervantes UAEM-Texcoco,Me´xico VIII EdgarChavez UniversityofMichoacana,Me´xico StephenChen YorkUniversity,Canada FranciscoChicano UniversityofMa´laga,Spain ChristianDominguezMedina CIC-IPN,Me´xico LilianaCucu-Grosjean Loria,France BernabeDorronsoro UniversityofLuxembourg,Luxembourg MichaelEmmerich LeidenUniversity,TheNetherlands EdgarGalvan TrinityCollegeUniversity,Ireland JesusGonzalezBernal NationalInstituteofAstrophysics, OpticsandElectronics,Me´xico JeffreyHorn NorthernMichiganUniversity,USA DidierKeymeulen JetPropulsionLaboratory,USA JoannaKolodziej UniversityofBielsko-Biala,Poland RicardoLandaBecerra CINVESTAV-IPN,Mexico AdrianaLara IPN,Mexico AndrewLewis GriffithUniversity,Australia LiliLiu NortheasternUniversity,China FranciscoLuna UniversityofMa´laga,Spain GabrielLuque UniversityofMa´laga,Spain EvelyneLutton INRIASaclay Ile-de-France,France LuisMart´ı UniversidadCarlosIIIdeMadrid,Spain Jo¨rnMehnen CranfieldUniversity,UK NicolasMonmarche´ UniversityofTours,France JamesMontgomery SwinburneUniversityofTechnology, Australia IreneMoser SwinburneUniversityofTechnology, Australia BorisNaujoks TUDortmundUniversity,Germany SergioNesmachnow UniversidaddelaRepu´blica,Uruguay GustavoOlague CICESEResearchCenter,Me´xico EduardoRodriguez-Tello CINVESTAV-IPN,Mexico GustavoSanchez SimonBolivarUniversity,Venezuela ChristophSchommer UniversityofLuxembourg,Luxembourg AntoniodelSol UniversityofLuxembourg,Luxembourg JuanHumbertoSossaAzuela CIC-IPN,Me´xico KiyoshiTanaka ShinshuUniversity,Japan GregorioToscano-Pulido CINVESTAV-IPN,Me´xico HeikeTrautmann TUDortmundUniversity,Germany LeonardoTrujillo CICESEResearchCenter,Mexico AlanReynolds Heriot-WattUniversity,Edinburgh,Scotland HiroyukiSato ShinshuUniversity,Japan PonnuthuraiSuganthan NanyangTechnologicalUniversity, Singapore SimonWessing TUDortmundUniversity,Germany FatosXhafa UniversitatPolitecnicadeCatalunya,Spain Organization IX Local OrganizingCommittee OliverSchu¨tze CINVESTAV-IPN,Me´xico FelipaRosasLo´pez CINVESTAV-IPN,Me´xico Sof´ıaRezaCruz CINVESTAV-IPN,Me´xico ErikaBereniceR´ıosHerna´ndez CINVESTAV-IPN,Me´xico SantiagoDom´ınguezDom´ınguez CINVESTAV-IPN,Me´xico Jose´ LuisFloresGarcilazo CINVESTAV-IPN,Me´xico ChristianDominguezMedina CIC-IPN,Me´xico Contents Organization ................................................... VII PartI CellMappingandQuasi-stationaryDistributions Control of Nonlinear Dynamic Systems with the Cell Mapping Method........................................................ 3 Jian-QiaoSun 1 Introduction.............................................. 3 2 OptimalControl .......................................... 4 3 CellMappingMethods .................................... 6 3.1 ControlApplication ............................... 6 4 OptimalControlofCompetingSpecies ....................... 7 4.1 NumericalExamplesofOptimalControl.............. 9 5 Conclusions.............................................. 16 References..................................................... 17 Empirical Analysis of a Stochastic Approximation Approach forComputingQuasi-stationaryDistributions ....................... 19 JoseBlanchet,PeterGlynn,ShuhengZheng 1 Introduction.............................................. 19 1.1 RelatedLiterature ................................. 20 2 BackgroundandMotivation ................................ 21 2.1 ContactProcess................................... 21 2.2 Quasi-stationaryDistribution........................ 22 2.3 Physicist’sHeuristic ............................... 23 3 StochasticApproximationAnalysisoftheAlgorithm ........... 24 3.1 FormalDescriptionoftheAlgorithm ................. 24 3.2 SketchofProofofConvergence ..................... 26 4 Variationson the Existing Algorithmwith ImprovedRate ofConvergence........................................... 27 4.1 CounterExampletoCLT ........................... 27 4.2 TheParallelAlgorithm............................. 28 XII Contents 5 Continuous-TimeMarkovChains............................ 30 5.1 FormulationandConvergence....................... 30 5.2 RateofConvergence............................... 31 5.3 Uniformization ................................... 31 6 NumericalExperiments .................................... 31 6.1 LoopyMarkovChain .............................. 31 6.2 ContactProcessonCompleteGraph.................. 34 7 DiscussionandConclusion ................................. 36 References..................................................... 36 PartII GeneticProgramming LocalityinContinuousFitness-ValuedCasesandGeneticProgramming Difficulty ...................................................... 41 EdgarGalvan,LeonardoTrujillo,JamesMcDermott,AhmedKattan 1 Introduction.............................................. 42 2 Locality ................................................. 43 2.1 ExtendingtheDefinitionofLocalitytotheContinuous Valued-Fitness.................................... 44 3 RelatedWork............................................. 45 3.1 SamplingtheFitnessLandscape ..................... 45 4 ExperimentalSetup ....................................... 47 4.1 BenchmarkProblems .............................. 47 4.2 UniformGeneticProgramming...................... 47 4.3 SettingBounds ................................... 48 4.4 EvolutionaryRuns................................. 48 4.5 SamplingandMeasuringLocality.................... 49 5 ResultsandDiscussion..................................... 49 5.1 QuantitativeLocalityMeasuresandPerformance....... 49 5.2 DefinitionsofLocalityandLimitations ............... 54 6 Conclusions.............................................. 54 References..................................................... 55 Analysis and Classification of Epilepsy Stages with Genetic Programming................................................... 57 Arturo Sotelo, Enrique Guijarro, Leonardo Trujillo, Luis Coria, YulianaMart´ınez 1 Introduction.............................................. 57 2 EpilepsySignals .......................................... 59 3 ExperimentalData ........................................ 60 3.1 SignalRecording.................................. 61 4 ProblemStatement ........................................ 63 4.1 Proposal ......................................... 63 5 ExperimentsandResults ................................... 65 6 SummaryandConclusions ................................. 68 References..................................................... 69

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.