ebook img

Evolutionary Learning. Advances in Theories and Algorithms PDF

361 Pages·2019·5.89 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evolutionary Learning. Advances in Theories and Algorithms

Zhi-Hua Zhou · Yang Yu · Chao Qian Evolutionary Learning Advances in Theories and Algorithms Evolutionary Learning: Advances in Theories and Algorithms Zhi-Hua Zhou Yang Yu (cid:129) (cid:129) Chao Qian Evolutionary Learning: Advances in Theories and Algorithms 123 Zhi-Hua Zhou Yang Yu NanjingUniversity NanjingUniversity Nanjing, Jiangsu,China Nanjing, Jiangsu,China ChaoQian NanjingUniversity Nanjing, Jiangsu,China ISBN978-981-13-5955-2 ISBN978-981-13-5956-9 (eBook) https://doi.org/10.1007/978-981-13-5956-9 ©SpringerNatureSingaporePteLtd.2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Aroundtheyearof2001,thefirstauthorofthismonograph,Zhou,devel- opedwithhiscollaboratorsapowerfulselectiveensembleapproach.This approachisabletoproducesmall-sizedensembleswithgeneralizationper- formanceevenstrongerthanthatoffull-sizedonesbyexploitinggenetical- gorithm,apopularlyusedevolutionaryalgorithm(EA).Zhourealizedthat EAs are powerful optimization techniques that can be well useful in vari- ousmachinelearningtasks.Atthattime,however,EAswerealmostpurely heuristic,notfavoredbythemachinelearningcommunitywithstrongthe- oreticalflavor.ImpressedbythesuccessesofEAsinapplications,Zhoube- lievedtheremustbesometheoreticalexplanationsbehindtheirmysteries and decided to start this track of research. In 2004, the second author of thismonograph,Yu,finishedhisbachelorthesisonselectiveensembleun- derthesupervisionofZhou.YuthenjoinedZhouasaPhDstudenttaking theoreticalaspectsofEAsashisthesistopic,andobtainedPhDdegreein 2011.In2009,Zhouacceptedthethirdauthorofthismonograph,Qian,as hisPhDstudentwiththeoriesandalgorithmsofevolutionarylearningfor histhesistopic,andQianobtainedhisPhDdegreein2015.Overall,thema- jority of contents in this monograph are research results achieved by the authors during the past two decades. Thismonographiscomposedoffourparts.PartIbrieflyintroducesevo- lutionarylearningandsomepreliminaries.Aimingatanalyzingtherunning timecomplexityandtheapproximationability,thetwoessentialtheoretical aspectsofEAs,PartIIpresentstwogeneralapproachesforderivingrunning timeboundsandageneralframeworkforcharacterizingtheapproximation performance.Theseresultsserveasgeneraltoolsforattainingmanytheo- reticalresultsreportedintheremainderofthemonograph.PartIIIpresents aseriesoftheoreticalstudies,mainlyabouttheinfluenceofmajorfactors, such as recombination, solution representation, inaccurate fitness evalu- ation,population,etc.,ontheperformanceofEAs.InPartIV,theauthors comebacktoselectiveensemble,theiroriginalmotivatingtaskforstudy- ingEAs,andpresentalgorithmsbehavingatleastaswellasstate-of-the-art VI Preface selectiveensemblealgorithms.Theauthorsthenstudysubsetselection,a moregeneralproblemwidelyoccurringinvariousmachinelearningtasks, andpresentaseriesofevolutionarylearningalgorithmswithboundedap- proximationguarantees. TheauthorshopethatthegeneraltheoreticaltoolspresentedinPartII can be found useful for interested readers to explore theoretical founda- tions of evolutionary learning, the theoretical results presented in Part III canhelpreaderstogetmoreunderstandingaboutbehaviorsofevolution- arylearningprocessesandoffersomeinsightforalgorithmdesign,andthe algorithmspresentedinPartIVcanbefoundusefulinreal-worldapplica- tionsofmachinelearning. The authors want to thank their families, friends and collaborators. GratitudegoestoCelineChangandAlfredHofmannwhoencouragedauthors topublishthismonographwithSpringer. Theauthors February2019 Notations R realnumber N integer (·)+ positive,(·)canbeRorN (·)0+ non-negative,(·)canbeRorN x variable x vector (·,·,...,·) rowvector 0,1 all-0sandall-1svectors |·| ,|·| numberof0sand1sofavector 0 1 {0,1}n Booleanvectorspace X matrix (·)T transposeofavector/matrix X set {·,·,··· ,·}setbyenumeration [n] set{1,2,...,n} |·| cardinalityofaset 2X powersetofX,whichconsistsofallsubsetsofX X\Y complementofY inX,whichconsistsofelements inX butnotinY VIII Notations x stateofaMarkovchain X statespaceofaMarkovchain P(·),P(·|·) probabilityandconditionalprobability π probabilitydistribution f function E·∼π[f(·)],E·∼π[f(·)|·]expectation and conditional expectation of f(·) underdistributionπ,simplifiedasE[f(·)],E[f(·)|·] whenthemeaningisclear I(·) indicator function which takes 1 if · is true, and 0 otherwise (cid:2)·(cid:3),(cid:4)·(cid:5) floor and ceiling functions which take the great- est/leastintegerless/greaterthanorequaltoareal number OPT optimalfunctionvalue (cid:2) H n-thharmonicnumber,i.e., n (1/i) n i=1 ∀ forall ∃,(cid:2) thereexists,doesnotexist Contents PartI INTRODUCTION 1 Introduction ............................................... 3 1.1 MachineLearning....................................... 3 1.2 EvolutionaryLearning ................................... 4 1.3 Multi-objectiveOptimization............................. 6 1.4 OrganizationoftheBook................................. 9 2 Preliminaries............................................... 11 2.1 EvolutionaryAlgorithms ................................. 11 2.2 Pseudo-BooleanFunctions............................... 15 2.3 RunningTimeComplexity ............................... 17 2.4 MarkovChainModeling ................................. 19 2.5 AnalysisTools........................................... 21 PartII ANALYSISMETHODOLOGY 3 RunningTimeAnalysis:Convergence-basedAnalysis........... 29 3.1 Convergence-basedAnalysis:Framework.................. 30 3.2 Convergence-basedAnalysis:ApplicationIllustration....... 34 3.3 Summary............................................... 39 4 RunningTimeAnalysis:SwitchAnalysis....................... 41 4.1 SwitchAnalysis:Framework .............................. 41 4.2 SwitchAnalysis:ApplicationIllustration ................... 46 4.3 Summary............................................... 50 5 RunningTimeAnalysis:ComparisonandUnification .......... 51 5.1 AnalysisApproaches:Formalization....................... 51 5.2 SwitchAnalysisvs.FitnessLevel .......................... 53 X Contents 5.3 SwitchAnalysisvs.DriftAnalysis.......................... 57 5.4 SwitchAnalysisvs.Convergence-basedAnalysis............ 61 5.5 AnalysisApproaches:Unification ......................... 65 5.6 Summary............................................... 67 6 ApproximationAnalysis:SEIP................................ 69 6.1 SEIP:Framework ........................................ 70 6.2 SEIP:ApplicationIllustration ............................. 77 6.3 Summary............................................... 80 PartIII THEORETICALPERSPECTIVES 7 BoundaryProblemsofEAs................................... 83 7.1 BoundaryProblemIdentification ......................... 84 7.2 CaseStudy.............................................. 87 7.3 Summary............................................... 92 8 Recombination ............................................. 93 8.1 RecombinationandMutation ............................ 95 8.2 RecombinationEnabledMOEAs.......................... 97 8.3 CaseStudy.............................................. 100 8.4 EmpiricalVerification.................................... 106 8.5 Summary............................................... 108 9 Representation .............................................109 9.1 GeneticProgrammingRepresentation..................... 111 9.2 CaseStudy:MaximumMatchings......................... 113 9.3 CaseStudy:MinimumSpanningTrees..................... 119 9.4 EmpiricalVerification.................................... 125 9.5 Summary............................................... 128 10 InaccurateFitnessEvaluation ................................129 10.1 NoisyOptimization...................................... 130 10.2 InfluenceofNoisyFitness................................ 132 10.3 DenoisebyThresholdSelection........................... 136 10.4 DenoisebySampling .................................... 141 10.5 EmpiricalVerification.................................... 148 10.6 Summary............................................... 152 11 Population .................................................155 11.1 InfluenceofPopulation .................................. 156 11.2 RobustnessofPopulationagainstNoise ................... 160 11.3 Summary............................................... 172

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.