Advances in Mechanics and Mathematics Volume 24 SeriesEditors: DavidY.Gao,VirginiaPolytechnicInstituteandStateUniversity RayW.Ogden,UniversityofGlasgow RomeshC.Batra,VirginiaPolytechnicInstituteandStateUniversity AdvisoryBoard: IvarEkeland,UniversityofBritishColumbia TimHealey,CornellUniversity KumbakonomRajagopal,TexasA&MUniversity TudorRatiu,E´colePolytechniqueFe´de´rale DavidJ.Steigmann,UniversityofCalifornia,Berkeley Formoretitlesinthisseries,goto http://www.springer.com/series/5613 • Mikhail Z. Zgurovsky • Valery S. Mel’nik Pavlo O. Kasyanov Evolution Inclusions and Variation Inequalities for Earth Data Processing I Operator Inclusions and Variation Inequalities for Earth Data Processing (cid:65)(cid:66)(cid:67) Dr. Mikhail Z. Zgurovsky Pavlo O. Kasyanov Valery S. Mel’nik National Technical University of Ukraine “Kyiv Polytechnic Institute” Institute for Applied System Analysis National Academy of Sciences of Ukraine 37, Peremogy Ave. 03056 Kyiv Ukraine [email protected] ISSN1571-8689 e-ISSN1876-9896 ISBN978-3-642-13836-2 e-ISBN978-3-642-13837-9 DOI10.1007/978-3-642-13837-9 SpringerHeidelberg Dordrecht London New York LibraryofCongressControlNumber: 2010936816 (cid:2)c Springer-VerlagBerlinHeidelberg2011 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneral descriptive names,registered names, trademarks, etc. inthis publication does not imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign: deblik, Berlin Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The necessity of taking into account non-linear effects, memory effects, sharp- ening conditions, semipenetration etc has arisen in recent years. It is caused by intensification of processes in appliedchemistry, petrochemistry,transportationof energy carriers, physics, energetics, mechanics, economics and in other fields of technologyandindustry.Whenmodelingsuchphenomenawearefacedwithnon- linear boundaryvalue problemsfor partial differentialequationswith multivalued ordiscontinuousright-handside,variationalinequalities(evolutionalaswellassta- tionary), an evolutional problem on manifolds (either with or without boundary), pairedequations,cascadingsystemsetc. Interpretingaconceptofderivativeprop- erly we can treat all these objects as operator or differential-operator inclusions in Banach spaces and study them by the help of theory of multivalued maps of pseudo-monotonetype. The given book arose from seminars and lecture courses on multi-valued and non-linear analysis and their geophysical application. These courses were deliv- ered for rather differentcategoriesof learners in NationalTechnicalUniversity of Ukraine“KievPolytechnicInstitute”,KievNationalTarasShevchenkoUniversity, SecondUniversityofNaples,UniversityofSalernoetc.during10years.Thebook isaddressedtoawidecircleofmathematicalaswellasengineeringreaders. It is unnecessary to tell that the pioneering works of such authors as V.I. Ivanenko, J.-L. Lions, V.V. Obukhovskii, N. Panagiotopoulos, N.S. Papageoriou, whocreatedanddevelopedthetheoryofmentionedproblems,exertedthepowerful influenceonthisbook. We are thankful to V.O. Gorban, I.N. Gorban, N.V. Gorban, V.I. Ivanenko, A.N.Novikov,V.I.Obuchovskii,N.A.Perestyuk,A.E.Shishkovforusefulremarks. We are gratefulto the many students who have attended our lectures while we weredevelopingthenotesforthisvolume. We want to express our gratitude to O.P. Kogut and N.V. Zadoyanchukfor the exceptionaldiligencewhenpreparingtheelectronicversionofthebookandfriendly helpinlinguisticissues. WewanttoexpressthespecialgratitudetoKathleenCassandOlenaL.Poptsova foratechnicalsupportofourbook. v vi Preface Finally,we expressourgratitudetoeditorsofthe “Springer”PublishingHouse who worked with our book and everybody who took part in preparation of the manuscript. Beforehand we apologize to people whose works were missed inadvertently whenmakingthereferences. Wewillbegratefultoreadersforanyremarksandcorrections. Kyiv,Ukraine MilkhailZ.Zgurovsky August2010 ValeryS.Mel’nik PavloO.Kasyanov Contents 1 PreliminaryResults............................................................ 1 1.1 TheMainResultsfromMultivaluedMappingTheory.................. 2 1.2 ClassesofMultivaluedMaps............................................. 29 1.3 SubdifferentialsinInfinite-DimensionalSpaces ........................ 95 1.4 MinimaxInequalitiesinFinite-DimensionalSpaces....................125 References.......................................................................136 2 Operator Inclusions and Variation Inequalities inInfinite-DimensionalSpaces ...............................................139 2.1 StrongSolutionsforParameterizedOperatorInclusions................139 2.2 ParameterizedOperatorInequalities.....................................145 2.3 VariationInequalitiesinBanachandFrechetSpaces ...................158 2.4 ThePenaltyMethodforMultivariationInequalities ....................162 2.5 NonlinearOperatorsEquationsoftheHammersteinType. SystemofOperatorsEquations...........................................190 2.6 NonlinearNon-coerciveOperatorEquations andTheirNormalization..................................................201 2.7 SomeExampleConnectedwithMembranesTheory....................238 References.......................................................................242 Index.................................................................................245 vii • Acronyms fora.e. Foralmosteach l.s.c. Lowersemicontinuous N-s.b.v. N-semiboundedvariation N-sub-b.v. N-subboundedvariation r.c. Radialcontinuous r.l.s.c. Radiallowersemicontinuous r.s.c. Radialsemicontinuous r.u.s.c. Radialuppersemicontinuous s.b.v. Semiboundedvariation s.m. Semimonotone sub-m. Submonotone sub-b.v. Subboundedvariation u.h.c. Upperhemicontinuous u.s.c. Uppersemicontinuous u.s.b.v. Uniformsemiboundedvariation V-s.b.v. V-semiboundedvariation w.l.s.c. Weaklylowersemicontinuous ix •