ORIGINALRESEARCH published:01February2016 doi:10.3389/fpls.2016.00037 Evolution and Functional Insights of Different Ancestral Orthologous Clades of Chitin Synthase Genes in the Fungal Tree of Life MuLi1†,CongJiang1†,QinhuWang1,ZhongtaoZhao2,QiaojunJin1,Jin-RongXu1,3and HuiquanLiu1* Editedby: ThiagoMottaVenancio, 1StateKeyLaboratoryofCropStressBiologyforAridAreas,CollegeofPlantProtection,NorthwestA&FUniversity,Yangling, UniversidadeEstadualdoNorte China,2SouthChinaBotanicalGarden,ChineseAcademyofSciences,Guangzhou,China,3DepartmentofBotanyand Fluminense,Brazil PlantPathology,PurdueUniversity,WestLafayette,IN,USA Reviewedby: LakshminarayanM.Iyer, Chitin synthases (CHSs) are key enzymes in the biosynthesis of chitin, an important NationalCenterforBiotechnology structural component of fungal cell walls that can trigger innate immune responses in Information,NationalLibraryof Medicine,NationalInstitutesofHealth, hostplantsandanimals.MembersofCHSgenefamilyperformvariousfunctionsinfungal USA cellular processes. Previous studies focused primarily on classifying diverse CHSs into RobsonFranciscoDeSouza, UniversidadedeSãoPaulo,Brazil different classes, regardless of their functional diversification, or on characterizing their A.MaxwellBurroughs, functions in individual fungal species. A complete and systematic comparative analysis NationalCenterforBiotechnology of CHS genes based on their orthologous relationships will be valuable for elucidating Information,NationalLibraryof Medicine,NationalInstitutesofHealth, the evolution and functions of different CHS genes in fungi. Here, we identified and USA compared members of the CHS gene family across the fungal tree of life, including *Correspondence: 18 divergent fungal lineages. Phylogenetic analysis revealed that the fungal CHS gene HuiquanLiu [email protected] family is comprised of at least 10 ancestral orthologous clades, which have undergone †Theseauthorshavecontributed multipleindependentduplicationsandlossesindifferentfungallineagesduringevolution. equallytothiswork. Interestingly, one of these CHS clades (class III) was expanded in plant or animal pathogenic fungi belonging to different fungal lineages. Two clades (classes VIb and Specialtysection: Thisarticlewassubmittedto VIc) identified for the first time in this study occurred mainly in plant pathogenic fungi BioinformaticsandComputational from Sordariomycetes and Dothideomycetes. Moreover, members of classes III and Biology, VIb were specifically up-regulated during plant infection, suggesting important roles in asectionofthejournal FrontiersinPlantScience pathogenesis.Inaddition,CHS-associatednetworksconservedamongplantpathogenic Received:11September2015 fungiareinvolvedinvariousbiologicalprocesses,includingsexualreproductionandplant Accepted:11January2016 infection. We also identified specificity-determining sites, many of which are located at Published:01February2016 oradjacenttoimportantstructuralandfunctionalsitesthatarepotentiallyresponsiblefor Citation: LiM,JiangC,WangQ,ZhaoZ,JinQ, functionaldivergenceofdifferentCHSclasses.Overall,ourresultsprovidenewinsights XuJ-RandLiuH(2016)Evolutionand into the evolution and function of members of CHS gene family in the fungal kingdom. FunctionalInsightsofDifferent Specificity-determiningsitesidentifiedheremaybeattractivetargetsforfurtherstructural AncestralOrthologousCladesof ChitinSynthaseGenesintheFungal andexperimentalstudies. TreeofLife.Front.PlantSci.7:37. doi:10.3389/fpls.2016.00037 Keywords:chitinsynthase,fungi,evolution,functionaldiversification,plantinfection FrontiersinPlantScience|www.frontiersin.org 1 February2016|Volume7|Article37 Lietal. FungalChitinSynthaseGeneFamily INTRODUCTION daughtercellsaftercelldivisionasarepairenzyme(Cabibetal., 1989). ScCHS2 participates in the processes of primary septum Chitin, a polymer of N-acetylglucosamine, is the second most formationandcelldivision(Silvermanetal.,1988).Themajority abundantbiomassinnatureaftercellulose(Merzendorfer,2011). of chitin is synthesized by ScCHS3, which is also responsible Itisanimportantstructuralcomponentofthecellwallinfungi, for forming the ring of chitin at the budding site (Shaw et al., playing a crucial role in the maintenance of cell morphology 1991; Schmidt, 2004). Roles of CHSs are more complicated in (Bowman and Free, 2006). As a classic pathogen-associated filamentousfungi.IntheplantpathogenicfungusMagnaporthe molecular pattern (PAMP), fungal chitin can trigger innate oryzae, for example, CHSs also participate in processes related immune responses in host plants and animals (Shibuya and to pathogenicity. The Mochs1 deletion mutant has a defect Minami, 2001; Reese et al., 2007). A number of enzymes in conidiogenesis, which limits the infection of host plants participate in the formation of chitin, but the chitin synthases (Kong et al., 2012). MoCHS7 is responsible for appressorium (CHSs) are the crux of this process. CHSs are located in the penetration and invasive growth (Kong et al., 2012). Previous plasmamembraneandtransferN-acetylglucosaminetogrowing studiesfocusedprimarilyonthefunctionsofCHSsinindividual chitinchains(Merzendorfer,2011).Owingtothelackofchitinin fungalspecies.Acompleteandsystematiccomparativeanalysis plantsandmammals,CHSsareconsideredattractivetargetsfor of CHS gene family across the fungal kingdom will be valuable developingefficientantifungalagentsusedtocontrolpathogenic forelucidatingtheirevolutionaryandfunctionalrelationships. fungi(Free,2013). In this study, we systematically identified members of the CHSgeneshavebeenidentifiedinvariousfungi.Accordingto CHSgenefamilyacross109representativefungifrom18major thephylogeneticpositionsandsimilarityindomainarchitecture, fungal lineages. The orthologous and paralogous relationships these genes were divided into three divisions (Roncero, 2002; among various CHS genes were resolved. We found that one Choquer et al., 2004; Mandel et al., 2006; Latgé, 2007). orthologous clade of CHS genes (class III) was expanded CHSs in division I contain type I (CS1, PF01644) and type mainly in important animal or plant pathogenic fungi from II (CS2, PF03142) chitin synthase domains, as well as a different fungal lineages. We also report the identification chitin synthase N-terminal domain (CS1N, PF08407); CHSs in of two novel clades of CHSs (classes VIb and VIc) that division II contain CS2 and other additional domains; CHSs are present mainly in pathogenic fungi from Sordariomycetes in division III contain only the CS2 domain (Choquer et al., and Dothideomycetes. Further expression analyses showed 2004; Mandel et al., 2006). Division I was further divided that members of classes III and VIb were specifically up- into three classes I, II, and III, and division II comprised regulated during plant infection, suggesting important roles in three classes IV, V, and VII, whereas division III contained pathogenesis.Moreover,wefoundthatCHS-associatednetworks the single class VI (Mandel et al., 2006). Previous studies are conserved in plant pathogenic fungi and involved in focused primarily on classifying diverse CHSs into different various biological processes, including sexual reproduction and classes (Choquer et al., 2004; Mandel et al., 2006; Ruiz-Herrera plant infection. In addition, we determined the specificity- and Ortiz-Castellanos, 2010). The majority of these studies determining sites that are potentially responsible for functional employed a limited number of fungal species from a narrow diversification of different CHS genes. Our results provide new range of fungal lineages (mostly later-branching fungi), which insights into the evolution and function of the fungal CHS could lead to difficulty in establishing the relationships among genes. different classes and even ambiguously classifying some CHSs into different or multiple classes. For example, class VI was clustered with division I in the study by Odenbach et al. RESULTS AND DISCUSSION (2009) but with division II in the study by Niño-Vega et al. (2004). In addition, some CHS genes from basidiomycetes of The Fungal CHS Gene Family is Composed class II in the study of Ruiz-Herrera and Ortiz-Castellanos of at Least 10 Ancestral Orthologous (2010) were classified into classes I and II in the study of Munro and Gow (2001). More recently, Pacheco-Arjona and Clades Ramirez-Prado classified CHSs from 54 fungal genomes into Based on the common conserved domains of CS1 and CS2, theexistingclassificationscheme(Pacheco-ArjonaandRamirez- we identified 978 CHS genes in the predicted proteomes of Prado, 2014). However, the established classes of CHSs may 109 representative fungi from 18 fungal lineages in phyla contain distant ancestral paralogs with distinct functions in Cryptomycota, Microsporidia, Neocallimastigomycota, fungi. Because theorthologs retainthesame function (Koonin, Chytridiomycota, Entomophthoramycotina, Zygomycota, 2005), evolutionary classification of CHS genes based on Glomeromycota, Ascomycota, and Basidiomycota (Figure1; the orthologous relationship is more reliable for transferring Table S1). Among these, 373 genes contained CS1N, CS1, and functionalannotation. CS2 domains, suggesting that these genes were members of Different CHSs have been proved to play various roles, divisionI.FiveadditionalgeneslackedtheCS2domainandone suggesting that members of this family have undergone of those also lacked the CS1N domain, which may be due to functional diversification to a certain extent. For example, the genomeassemblygaps.Theremaining600genesharboredonly buddingyeastSaccharomycescerevisiaehasthreeCHSgeneswith the CS2 domain, suggesting that these genes are members of differentfunctions.ScCHS1replenisheschitininthecellwallof divisionIIorIII. FrontiersinPlantScience|www.frontiersin.org 2 February2016|Volume7|Article37 Lietal. FungalChitinSynthaseGeneFamily Division I Division II Division III Total numbers a b a b Plant pathogen -----------------Trichophyton equinum 1 1 1 1 1 1 1 -------------Trichophyton verrucosum 1 1 1 1 1 1 1 Animal pathogen ---------------Trichophyton tonsurans 1 1 1 1 1 1 1 -------------------Trichophyton rubrum 1 1 1 1 1 1 1 -----------------Arthroderma gypseum 1 1 1 1 1 1 1 ------------------------Arthroderma otae 1 1 1 1 1 1 1 --------------Arthroderma benhamiae 1 1 1 1 1 1 1 -------------------Coccidioides immitis 1 1 1 1 1 1 1 ---------------Coccidioides posadasii 1 1 1 1 1 1 1 --------------------Uncinocarpus reesii 1 1 1 1 1 1 1 ---------------Ajellomyces capsulatus 1 1 1 1 1 1 1 --------------Ajellomyces dermatitidis 1 1 1 1 1 1 1 Eurotiomycetes -------Paracoccidioides brasiliensis 1 1 1 1 1 1 1 -------------------Aspergillus nidulans 2 1 2 1 1 1 1 ----------------------Aspergillus terreus 1 1 2 1 1 1 1 ------------------------Aspergillus niger 1 1 3 1 1 1 1 ----------------------Aspergillus oryzae 1 1 4 1 1 1 1 -----------------------Aspergillus flavus 1 1 4 1 1 1 1 1 -----------------Aspergillus fumigatus 1 1 2 1 1 1 1 --------------Aspergillus fischerianus 1 1 3 1 1 1 1 --------------------Aspergillus clavatus 1 1 2 1 1 1 1 -------------Penicillium chrysogenum 1 1 3 1 1 1 1 ------------------Penicillium marneffei 1 1 1 1 1 1 1 -----------------Talaromyces stipitatus 1 1 1 1 1 1 1 -------------------Metarhizium acridum 1 1 1 1 1 1 1 ----------------Metarhizium anisopliae 1 1 1 1 1 1 1 ---------------------Trichoderma reesei 1 1 1 1 1 1 1 1 ---------------------Cordyceps militaris 1 1 1 1 1 1 1 1 ----------------Fusarium verticillioides 1 1 3 1 1 1 3 2 ------------------Fusarium oxysporum 1 1 2 1 1 1 1 3 1 ---------------Fusarium graminearum 1 1 2 1 1 1 1 3 1 -----------------Nectria haematococca 1 1 3 1 1 2 1 1 1 -----------------Verticillium albo-atrum 1 1 1 1 1 1 1 2 Sordariomycetes ---------------------Verticillium dahliae 1 1 1 1 1 1 1 2 ---------------Glomerella graminicola 1 1 1 1 1 1 1 1 1 --------------Neurospora tetrasperma 1 1 1 1 1 1 1 ----------------------Neurospora crassa 1 1 1 1 1 1 1 ---------------Chaetomium globosum 1 1 1 1 1 1 1 ----------Chaetomium thermophilum 1 1 1 1 1 1 1 ----------------------Magnaporthe poae 1 1 2 1 1 1 --------Gaeumannomyces graminis 1 1 1 1 1 1 1 1 --------------------Magnaporthe oryzae 1 1 1 1 1 1 1 ------------------Botryotinia fuckeliana 1 1 2 1 1 1 1 ---------------Sclerotinia sclerotiorum 1 1 1 2 1 1 1 Leotiomycetes ----------------------Blumeria graminis 1 1 1 1 1 1 1 ---------Mycosphaerella graminicola 1 1 1 1 1 1 1 1 --------------Mycosphaerella fijiensis 1 1 1 1 1 1 1 1 ------------------Cladosporium fulvum 1 1 1 1 1 1 1 1 1 -----------Baudoinia compniacensis 1 1 1 1 1 1 1 ----------Pyrenophora tritici-repentis 1 1 1 1 1 1 1 1 Dothideomycetes ----------------------Pyrenophora teres 1 1 1 1 1 1 1 1 -------------------Cochliobolus sativus 1 1 1 1 1 1 1 -------------Phaeosphaeria nodorum 1 1 1 1 1 1 1 ----------------Rhytidhysteron rufulum 1 1 1 1 1 1 1 ----------------------Hysterium pulicare 1 1 1 1 1 1 1 --------Monacrosporium haptotylum 1 1 1 1 1 1 1 Orbiliomycetes ---------------Arthrobotrys oligospora 1 1 1 1 1 1 1 -----------------Tuber melanosporum 1 1 2 1 1 1 1 Pezizomycetes -----------------------Candida albicans 2 1 1 ------------------Candida parapsilosis 2 1 1 -----------------------Candida tropicalis 2 1 1 --------Lodderomyces elongisporus 2 1 2 --------------Debaryomyces hansenii 2 1 1 Saccharomycetes ----------------------Candida lusitaniae 2 1 1 ----------------Candida guilliermondii 2 1 1 ----------Saccharomyces cerevisiae 1 1 1 -----------------------Yarrowia lipolytica 1 1 1 1 1 2 -Schizosaccharomyces cryophilus 1 1 Schizosaccharomyces octosporus 1 1 --Schizosaccharomyces japonicus 1 1 Taphrinomycotina ------Schizosaccharomyces pombe 1 1 --------------------Taphrina deformans 1 1 1 --------------------Saitoella complicata 1 1 1 1 1 1 1 2 --------------------Coprinopsis cinerea 2 2 1 1 1 1 1 -------------Schizophyllum commune 2 1 1 1 1 1 1 --------------------------Laccaria bicolor 2 1 1 1 1 4 2 -------------Heterobasidion annosum 2 1 1 1 1 1 1 ----------Ganoderma sp. 10597 SS1 2 1 1 1 1 1 2 -------------------Dichomitus squalens 2 1 1 1 1 1 1 ---------------------------Postia placenta 3 1 1 2 1 Agaricomycotina ----------------Gloeophyllum trabeum 2 1 1 1 1 2 1 -------------------Coniophora puteana 2 1 1 1 1 1 2 ----------------------Serpula lacrymans 2 1 1 1 1 3 2 -------------Fomitiporia mediterranea 3 1 1 1 1 1 1 ------------Moniliophthora perniciosa 2 1 1 1 1 -----------Cryptococcus neoformans 3 1 1 1 1 1 1 ---------------------Cryptococcus gattii 2 1 1 1 1 1 1 -------------------------Ustilago maydis 2 1 1 1 1 1 1 Ustilaginomycotina ---------------------Malassezia globosa 1 1 1 1 1 1 ----------------------Puccinia striiformis 3 3 1 1 2 3 -----------------------Puccinia graminis 2 3 1 2 1 1 Pucciniomycotina ----------Melampsora larici-populina 2 2 2 1 1 1 --------------Rhizophagus irregularis 4 2 2 5 1 1 2 Glomeromycota --------------------Coemansia reversa 1 1 1 3 4 2 ---------------------Rhizopus chinensis 4 4 8 8 11 5 4 Zygomycota ----------------------Rhizopus delemar 4 2 6 5 6 3 3 --------------------Mucor circinelloides 4 2 4 4 6 3 --------------Conidiobolus coronatus 1 2 2 2 5 3 Entomophthoramycotina ------------------Gonapodya prolifera 4 1 2 2 ---------------Allomyces macrogynus 11 6 1 23 Chytridiomycota ---Batrachochytrium dendrobatidis 3 1 4 2 6 -------------Spizellomyces punctatus 6 1 4 1 7 -----------------------Orpinomyces sp. 6 2 5 1 6 Neocallimastigomycota -------------Enterocytozoon bieneusi 25 9 -------------Encephalitozoon cuniculi 1 -----------------------Anncaliia algerae 1 Microsporidia ---------------------------Vavraia culicis 1 -----------------------Edhazardia aedis 1 -----------------------Rozella allomycis 1 1 2 Cryptomycota FIGURE1|DistributionofCHSgenesacrossdifferentfungallineages.ThecopynumberofeachorthologousCHSclassisindicated.Thespeciestreewas constructedbasedonthephylogenetictreeofα-tubulins.ThehorizontalbarindicatesthetotalnumberofCHSsineachfungus.ForthedefinitionofI,II,III,IVa,IVb,V, VII,VIa,VIb,VIc,VIII,andothers(OTS),pleaseseethetext. FrontiersinPlantScience|www.frontiersin.org 3 February2016|Volume7|Article37 Lietal. FungalChitinSynthaseGeneFamily We then performed maximum likelihood phylogenetic basidiomycetes and early-branching fungal lineages, including analyses to determine the orthologous and paralogous Neocallimastigomycota, Chytridiomycota, Zygomycota, and relationships of these identified CHS genes based on their Glomeromycota. This clade was identified for the first time in common conserved domains. The phylogenetic tree of thisstudyanddefinedasclassVIII. division I displayed four distinct ancestral orthologous clades PhylogeneticanalysisshowedthatmembersofdivisionsIIand (Figures2,4A). Three of these orthologous clades correspond III are distantly related to each other (Figures3,4B). Division to classes I, II and III defined previously (Munro and Gow, II is comprised of four distinct orthologous clades. Two clades 2001; Choquer et al., 2004). Therefore, we define them as correspond to classes V and VII defined previously (Mandel classes I, II and III, respectively. Notably, previous studies et al., 2006) and are designated as classes V and VII in this showed ambiguous phylogenetic positions of classes I and study. Notably, class IV defined previously (Munro and Gow, II CHS genes from basidiomycetes (Munro and Gow, 2001; 2001;Choqueretal.,2004;Pacheco-ArjonaandRamirez-Prado, Pacheco-Arjona and Ramirez-Prado, 2014), but our study 2014)wasactuallycomprisedoftwoorthologousclades:classes clearly suggested that these CHS genes should be within class IVa and IVb. Orthologous relationships of some CHS genes I. A fourth orthologous clade contained CHS genes from from early-branching fungi were not determined. These genes Color ranges: Protein domains: Chytridiomycota CS1N Zygomycota CS1 Ustilaginomycotina CS2 Agaricomycotina Pucciniomycotina Taphrinomycotina SODELSPeauoeorobrcrztdohitcilziatiiohdoioormaemimmoroyoymyymcmccceyeyeeycttcteteceeeesostssteteisnsa AAAAAAAAAAA.......S...mmm.mmmmSmmmm.Sp.aaaaaaaaaUSpaaC.BuScccccccpccCBucSc..C.||n|.||||.cu|mB|AAAg||AAdnSAAp.DL.A.AAA|od.pnnSa.e|MuMMcM.M.aMMMMd.SFmMMeubp|eAtsninPSy|enA.nAAnPiuAAoAAqg.AGAA||c|AmAA|SPPonM|BgS|g|n|AuGGGPiGgG|GGSB.GGGg3.G.Gr|g.CiGPefi|DPHn|t..Bi3lyl7GASi1P00gD22r11apo10ia.d015iA.01G1|aP00E.s1D.gpi2529c1gPe20r|0P80a|04fE83.57A7|pg2y4lg0|Gut0|Ti3r69923j2E7A4n5Pa16g2Gg93|.2g0eiT0||6i8A2t3fg207495g635.j3|5ni606Ti|9i1651rGi3g4P0f09.43g30gi0|19s3i584095108|7050u019337c.02igi908|j841355i40010l8g6322TT0T3TcTAi6mT5Tg63T613T5TT4aA47674T191129i4hi2.338990000T00|940840|724.0f0410301084r1403i41T9g8127g11|9n766808021i3sA6356i3Ai5910g648056|T60185.878.ig9473T4850g9829|n222o902901Ai485i009gr8976P.55117991i9df131.y3l576|5|1703889c569ag0A5g9911857|i4hi.132rfA4497g653i0|.i8M6fA705R7s11g72.|iuM6423.547.c3gRc2dlim038621AR.8i5ePa..|rc18648|.4d4|l.5nRig10|c9i1cg3rieA08Ri9.|93hh.dl5730641c||ro5O41Ri|0r381A|hR52g0.j9i2gy39O7gf3ii16|.l8A|603GdR9M.3ji2g753ag1t8i72Te|A855.00G.e.i58Md159lg01c9r5T|i86n|5eR62i16i52.92rT002glc39g4.1P|iO|953|3.09R5is97119r4tg883796i|iO7m3T10|0034.G4T1a751g0R03e9U9ri44P00|83T7GqT.5294.5..g0c99m4ig0ut411T2|h5A7R042ro.23a64gi0a23i|1nT.b84y2j|2Mc|2g352Pe02|Tgh31g.Tii2.25nPG21li|04via3|6047.20TjgeTT2sgr.2i46r144r||tCG0i6g388r06u67gA|4i0.3i05.C030bgC8|2736o31329aQtAg.5108.i3n89t4a|M082|g132eg81Cy265gC2o5i60i0.3p3667.F|T|215png278C3.g9o220.eimi1i1180s608o3|236e4m897|1g6g4di02U1T5m5.i1|3|1r15g00701g8e88ii463A39Ge28.15|9830d631.3g31tHi7eA92r02.r52a0.|151ca156|Dg95jain7g801.P8p2n4i5.s|1716|qb62gji3r91gu401a491i||74g58P9Pg.85ii4t763C.r3022ipG90|.P697p.l51g.at5i8u0s39e|S16pt7rs3||86.g|f33ljg6a9g8iiS031c1i35.P893|c.939Cg22.o1n005i95sm3o89a93C3dt34|||3g26.j08gcii33g33ii1n37003L6|212g5R3.9.7bi6r216i38cu060fU5|1|597gj.6Hi80mg1.i6407pa13M660uy1Ml6.|0|.5jfggi99j9gil|i87o2j3C7|13gM.giMf40.3i2.u19gl0l5a0r|64j3r3aP4g||8ig3.6g8i1si736t6390r219|4BFC8.6P.85c8v0Q4.2soe6911Mrt|0r2mP||FF19jC.7.g4g3Vo6Qirx46E8a3yM0||8GP5F151FGT.410OCg04T77rX.1gGa7|Ga281F1tTT|02gG006N3Ci.S364h.2Gn65a10eTTeF|23o.F00g54|io.gm14x3iy5870|e82T0dF2807|OgFF68.iX.463vm49eG9re2013|d9422F|0g1FVS.2i23Eg.3cr99GoTa43|m0002F2|1g8G2i3S3CN9.90G4.hcT211ai60n0e9||1g6g1ii2363L95M0T..91b2a07i9nci4||1g4g4ii018D37762M.04.s421aq7c1ur12||g06gii13939982T55.2r36e2G9e3|.8s2gi2p338|7j49gC0Ci..15p1m1ui6l5t||62ggi19i334449V6S2.35d.l2aa94hc2|1|3ggi10i334443669V3.76al4G9b8|5.0tgir35a36|0jg2i41G.20g1H0r53a.|a88gn6i4n3|1jg0i7192C2.27gl89o0|44CPH.pGlTa0|s0C.f5t19h0e6|7gi34P0.p92la3|6sSN5f.6ta9e5.tc|ogi|3S05a0ic2o93554N80.8c8r2a|NT.CdUe0f|3T6D112MT5.0p7oS0a|.jaM.pA|PgiG20153445130T304Ga5.gSr1|.pGoGmT|Gg0i16986111T30750SM..ocrry|y|MSGPGO0G1800220T009T0SB..ofucct||gSi1O5C42G9062024696T0N.Yh.aliep|g|iY3A02L8I806D23245938pF.ver|FVSE.cGe00r0|3834T00443698M.poa|MACPG.1lu05s2|1gTi0260945371S.scl|gi1560C596.g90ui|gi146419865B.fuc|gi154315738D.han|gi294656380B.gar|bghP00822C.par|gi354548408T.mel|Tubme1214L.elo|gi149235319T.mel|TubmCe.tr2o|7gi42555723074M.hap|jgi1C.3al3b|4gi68478998A.oli|gi3C4.g5u5i|6gi7174664520848Y.lip|YAD.LhIa0n|Dgi02391476594p652T.def|TC.lDu2s|5gi72360947162Sa.coL.|Selao|icgio114796224558G16.sp|Cj.gpi1ar1|4gi93558454D73.s3q5uC.t|rgoi|3g9i52535370P343.1p060lCa.0|aslfb1|7gi684S7.6la41cA.0|golii|3g3i634356C54.67p72u5M4.t8|hg8ai3p|9j2gi5H496.a21T7n2.2nm7|jegl|i1Tu4Lb6.7mb0eicM97.|2go3ri1y9|70MC0G9.c0GiG8n0a69|.g65gir52|19MGT90G7.pT4Me7.Gr5p1|g8o4i40a2|S337M.8cTA5oN0.P9mc4Gr|50ag|67Gi388N00.Ct02rNUa.T6t00|9ej4gt6|2i7C1g5i931.37c5T5Ci09.n09g2|lg49oi|F416C6.m39HC9.8etG5dhT6|e0Cg|17ig3.3i0n4939Ge.343og02r|91gCa|15i.5g46giV895.a3205at1l|620gbU7|7i34.g9im25V33.125a02d6y25aM6|49gh|2.3ig7gC02i.1l1o3308m|4iPg2l96|3i.19sg1i6M7t0.r347|9a4C66Pc605rQ.|344gMg1M9ir.8a430a8|M820Pn6i26|.G5Tl69ga.iT91rr34G|TePg200e1.i|293s7Ng72.t2i8r1h83|1PC0a8453.Qe50gTF|6.75r0Mg4iag81Mr312|4Pa0531|.FlG21.0aF997oTrPG1|6xGg3S.yTs|iF403.0GtF02r2v1P|358OeC0r.28|3XgBQ7.52FrGTMag07TV0r0|4T.15PaEt07B|o50.G0Gbf7n1T0guT88|.g3chGeT7|S0i.00q3Ts25As0c2u008c3.l16|8|gT.Bg0.4301gy0iiTc3795p1o.25T5|v5gM760me.6A|i74j3rg058|r.g1g5ibC3a5.5|i1efT2302g5nu5i0.l32r1||33M2jug90.5A96fgb9ii8i3j8.54||61oH0jg45.19Ct2gi11ai3p042.52|2uRp4lg958.|0C74ojr8i62328gsu7.4iP5f9i9|.m|2U1gj868n32gi28m1.i3oCr016.A5e0d|4|85sg83e.45gPdai43i|1.tAg6t|e321j1i3.er126Pgc9r|i.P|0g59at11rg76i.8i7pi2P3b|10.A59|362rgg47bi9a3.18riAo97161A0.|18ag6r898|59d29.y7iA9f9g421eA2.|il9rga1229c|52.i|97Un7530aAgg9.i262i6r81p5ig.2|2660Ct5eA76|.e6g639ig8ie16.1r|983C2if1A5|83m.i1gg5s4i547.1p9Ai0|f3Am24917.g7u|5o852771.oi09sgmAAn6t1i|87.55138ia11g50.|g3dT|5i4Pgc6.1966y8|tg36lii.g9444a7TpT5c0o0.|21i888|076h3.2ngegT99P5|s6i94.73riq167rtg91|38.751iPiAgmu18|u3.212|5g43i.00T3P2bb151gta512i.|i14r25075e.1r76vCigP37t|4i|541.1n7eg34eg|20.P2A397r4ms77rii.|g6412724|i33.RTa0gng4na.87915ii638r4tHiA.7os|9|234233d001r.t0j|8iMudgAg.10153082|ci3pg.5lf|i690Ci3A3204fg22g|.u8ia.j3f0456699MuA|g15f.ii6l2i12jf18|7.852mgB2|A6iuji4s5.j36g72n4531.||gg5M5Ail.1f229|i98161c2lggi.3Mr28Ajdii2172g6.76a7o|a9o6C.A7a17|19912i.6rg0|9mnT7P1.7aingg.10760iyt03FiRm2.8.|65ciig|9e91715rF7|R32c8jg..|67grerg8014FRi7vi5h9|c3|.g.l3N5iMgei|o78891ei1g8.c3rh.788gVM0|g3ii129|d7x6iVrh.R2.3534gig|1h4|.G6rR34ci44jy9.e9iF2dM2R979|.ai.1icga7jlG|4T332a597d.r7.|Ma238VFi9iS|g5c9.|geCS6145.2FRrl8.1eCS0ci0a1602hbp|OdNES3h.2|r3N8503.Sl3G03.j.hS9YOg0793.||aoB|So.i.a9epBDtTGC.2g79X25gg.2MC|cRA92CgCiLCa9h7.9i32oj.t|S.ra8|pfo33...c96426i4.girrgsejl.24Gyl|3.0..fcem93O.3.7ci.g.g.6|.ho|yT|GGme0lrcu7i1po42g10cpiaMt|t5Gh76gu9e3|47t0a63i|1r5M|r|ao23Dlg8c95e5l||l7uSag0l06Caia0oos8|r|i6S1TY21|4Gb02Ang|8G||g75i8|lN4i0Gr42Ti|9p|SP|3g|g|963|40H043|1OAgb||gi9g7PTi9gT9g9467100gg|1C4ii75307aO4G53i31jg1iGiLui8GC4G8i21Tg8912ii50176193i60U423654hGcIb023868i104T5690G4090T950882095345Po04mTT601950600967B1135045914140253510010922748043346801e78521653961240T253238791221258996954492653002055186181257003458182T9561540751TT74142423311T083T35750001468T444078608p280000001001 FIGURE2|MaximumlikelihoodphylogenyofdivisionICHSs.ThephylogenetictreewasconstructedusingPhyML3.1(Guindonetal.,2010).TheSH-like supportofapproximatelikelihoodratios(aLRT-SH)areplottedascirclesonthebranches(onlySH-likesupport>0.8areindicated).Colorsofbranchesindicate correspondingclasses.Thescalebarcorrespondsto0.1aminoacidsubstitutionpersite.Forabbreviationsoffungi,pleaseseeTableS1. FrontiersinPlantScience|www.frontiersin.org 4 February2016|Volume7|Article37 Lietal. FungalChitinSynthaseGeneFamily Color ranges: Protein domains: Chytridiomycota Myosin motor-like domain ZUysgtiolamgiyncoomtaycotina Cyt-b5 Agaricomycotina CS2 Pucciniomycotina DEK_C Taphrinomycotina Saccharomycotina ODELSPeuoeorborrztohditilziitiaodoioormemmimooyymymycccceyeyeetctcetteeeeesststseess PMTTTSABP.TT.ACnAP.CMC..g..M.e.Br.t.sbCof.tNU..v.orur.FC.ugqe.AotFiCA.Cpceae.mdNamern.bc..a.cyuPrNttl..iF.oce|rn.g|.cr.||a|o|hMsoH|d.|gpcngige|mgfgRgg|.rgAsh|gl..|rrgAuag|bemx|egaavt|gAiiileaG|.iigii|gi.A3a|1igeo.. ig31|3pylG3igtr|e1rf.gpi|3iMMfr1||V|gV3.ig|3i|faiNe396it||.iA.gFj|i32uc82u3ji2jjr3u5|isgC|Ag2g3oF5aig30|gi.34.g|||08g.9.l1i90jGf3C.96l4d7|agmgF14iapo2r6ri2Ag.6|.Oif|02iHg220Ai2i1461lag1jyt1jP694146a12li3i52o|rV5Ug42Sgai.e03b623i26|5g48.0|42yrX9|GP8081n029h.375g950a8g8n|gi76ir|E3|3690GT0c17i1|298i78g901G.2|g81192|7G2441ii09M|i59T5ig89g1gh7.25m424MG111d7i30561T6528i709855492255s222|28G6i30130ir316289|3G692.61g57421731t49|144a4920Y617A90g49363i150m44540g9768i459T940|2A6014175r779.i988G798976599382869Pi7gl62|98516034286723i.67G8e56924g612861i018434S441opG060l712337T32i953M95|9548l64S|079982273ia252964T4488080Y75|.5T0S0.0306.41l204T9g1762uC2h1409c.A1Ta21707il25102.0b85a8o02323ca748LS60593p|2|m17p2873I8.4c461S3ug4T9||09c9046j5it7eT0ga|60LFgo33HT35ii.43g01im.92L33ci96b099.7ia|3o86C6314b0c8.ngGi9166|F30i07ccn2g8537i.3.|5|i1vgj5n8652g0D01Ve|igrG9.62p92ia7rg1.si0|6054t6|0GF6grq2N659.48F1V4iaCu92s344|.3|.1F6jhPEg9p1.10g5.6F|fg3i.arj7.Giu0o9p5a1F35elg41lx7mPi8|17|SM.9|7a.GFj6y4v8g|1ge1C.0j.5p6|G.t5e.1lpi92Fid6Cf3rg318|nr.i7iau25S0Oj6||a02P8gP|egj1F|3n9i.7j9j8G2g9X3oag.0|Vs833|it0gnSTt8i38i|0G3M1r9EPg91o|9.0Pi5g143l723i01Ud.G3513CP.9t1a639250|ePr380g97|MG3Q214mr03.21.8i6|0g1t61ai6g20Mg6r0M43lT2y36i3i10||8034o706gC92.2|T2g69g3R3iFi064.8gA.810r70i0T7f.2d1a8uR88g.R6319F1.0f4e.|85lr9lTlVg642c|.a0|ad49jo810ig47hT|1|3eiRRx8gF5lF9|i.6308|j91yi69.5GOc253v2|g8F9R5iF3h03e854Si3.7|1OOg98r5FjG18G0|73r44F3.g1XM8a0io2.18V81G1G|31xcF90F8i10Ey94r.106G3|R64Gv|G93.F4130e54RISca3.61O93r04Th.Gc|33iTg0FX30|Mhj45.1ri06VTG||gVc5jT2Gi3iE0cr2g9.205|iTGVaRGR0T.91.010l.Tb5c1d07d346R|G4h0a.Te6Tg7iR5l|.3|chM3j0i02.0.3drTh|3gR89eic7gi0eCi|2l0j9erTi|9O23|.Tg9|0m83i4gR40G09460i64GiO3.Tl36g7|90134Vg05r4740R0ia.G.389d0755|1c4Nga476T15hM6ihi.880.35F|h43j|c9T14g.ai82ggrR00Ri3ie|.5.3r0F816|ca0dT4g2.03h|o3e06iiRF4l3|1.9x|8j9G2Fc0y289gR7i|.h2S082iFvR6|1O.83jeGOT00d39gr0i20eX|7M3lGF.1|7S62G11cV0i5a1R97r0E7|5.6OB1c21G103o8.440Td0|71GS4Me05.T01b9anA5c0T4i6|i.9rcB6o|0RT7o.8Dl00icT1|82gEhM60i8TR.i|PT.31j40acM.407g5nmihi58i9M|.T1|.ha5j0g0i1aar6g9Ti|c38pg0r81.2|C8|si8.j212gg9ti6Ai177mi|i395gl2.61|Tc26i.5622glr29ia344e6A39|262geN94|..427if316guhi574F23am.355A172eo4|1|.795gxf0g5ii00yis5|72P3F19|.10Fg0.47g7c9i2rO61h798a17X|r759|F9Fg1.GA744vi0G.2859ne457rS05i|A1d594GF6|.9Ng1n3V.33i2i76hgET707a|03AGg3e5|70Vi.913.tg57eiT7d12r30a77|8Ag0h20|1i2.931VfgTi8.l11a03a8l5|0Ag41b42|.i692o90Gg9.3i3r17yg3188rA|005ga1.|22c0i93g84Cai0.152tp3372h1|P6g1e501|.i59b17gi0Cr259.a3784g|l49g22Ao0i858|2.9d159C5eN85.H9rt8|69geUG6t58|iT2.9gr3N0i6.e734c1e8r592C|9ag00|0.ii2312MmN.965oCm2r683Uy65||Cg80G7i.6M41ap0.31Go5g5r9s9|G0|19g1GT8Ai330G3.00oT91B3t8.Ga4f380|Tu2g3c0A0|i27g.1i4g94S15y6.95psT84|c02lg2|T7i8g3.i2e9 11q8154u150|36Bg5.0i6g3T3r72.1at0|6o33bn4P8.g|7t9grh9ii|301Tg20i2.r6139u842Pb.965t|1g9er9i9|3A80g2i.06b730e321n09|94gC2.6i3s2T80a4.9t2v|6Pj.e58ginr0|o1g0d2i2|31g80i1S0212a665.95c68o20|S082a0R4.icTr5o.umf|8je7gil7|8T56uH4M7.b6p.mgulrAe|.aj7b|ggi9ei23n3|09g5i83130B92.T0c4.9ov95em5r0|7|gj6ig73i407226T5.6tM24oV09.nf|4ijg8|ijg3i2966T4.C07e.5q4fu5u5|l|4gjig63i12963487T.38ru18Hb5|.2pgiu3l2|j7g2i997A9.R62g.y6rpu4|fgi|j3g1i1500I582C73A.6.s9oa0tta||jggii229261P80.1t1e5A4r.2|cg9ai23p|3agi01950472072P59.0tr9iA|.2gdi1er8|9gi1296811090993B3.4Cg.rpao|sb|ggih3000383B1221.f6u8cC5|.igim15m|4gi310129117859S9.4s7cl|gUi.1r5ee6|0gi62355845625M64.o9ry|MA.Gfis|Ggi016190468415T409Ga.gr|GGA.fTuGm|0g4i7110080T10990M.poa|MAA.PclGa|0gi015221721T60016G.gra|Ag.in3ig1|0gi714952203518507V.alb|Pg.ic3hr0|2gi422552953034041V.dah|gi346A.9ni7d|0gi26472540294C.the|gi3409A.o5r9y|gi916659774655VC.glo|CHGTAf.0la|gi4238849637635N.cra|NCU05268T0A.ter|gi1153842720N.tetg|i350292872T.sti|gi242819391N.hae|gi302882365P.mar|gi212530180.IF.oxy|FOXG04179T0M.fi|jgji563325IF.gra|CF.GSfGu0l1|9j4g9T1i088642M.acr|gMi3.2g2r6a93|4g6i3798407989M.anBi|gi.3c22o71m245|2jgi70429TC..mmile|lgi|T3u46b3m25e0489506T.ree|Mgi.3h4a0p5|1jg39i984400S.pAu.no|lSi|PgPi3G4057576861T0051A.Yma.lci|pA|YMAALGI000E68262T1098pA.Ym.alicp||AYMAALIG00E2118074T107pSRa..dcelo||SRaO3icGo0181723714T60LR..bcihic|j|ggii215730108631L3R..bdiecl||gRi1O634G6151162953T2C0R..cdienl||gRi2O399G7014988S6R8.2.Tcc20hoi|mjgi|g1i435022069HR.3.ca3hni8|jn1g|ijg4i737418G0S..ptruan||jgSi6P9P8G20G9A8..6s5mp6a|Tcj|g0iA1M15A5GDA1.1.72sm1qa1uc6||gTA0i3M9AS5AG.3.0l2am79ca5c|8|g134iA35T3M06AC3AG.6.1p66mu65at16c||g64iAT309MS2AA.5.lGa81mc76a|19gc3|2i305A3TCM60AA.3.p7Gum20at|07cg|51i3A4898CMA2T.A.50nmG9e0a3o7c8||5g6A4i159CMA8T..A20gmG5a1a8t|7c8g|35iA635F92MA..T1Am02mGe4a1d9c7|5|3gA6P7iA32.M6.s9TAmt30raG|2Cc1|17Q6AP3S2M..M8s5p61At8ruT1G|n0C1|036QSP21BPMT.6.gP90d0rTeG2a0n04||P30MB2G3S.8DT.Tl9paE0GuTrT0|n00|g42iSU343PM2..98m8Pc73i8raGT|50y008M3|5g8R0.1.i887gc0841lh0oiT0|Tj|01g0Rgi7iR1..29c6c23h4h67ii6|1|jj6Rggi0Mi..12d3c2i2e2r98|l0|450RR03RO..1d3d2eGe5ll||MTR1R0R3..Oc0cOi33hr3i|G3|1RjGT1R0g0..i0c044c1h187h6ii504||9Rjj13gT7gTM.iTi0.6c7080ch8i7ri2||0Mj20g4R..9ic2c5i6rh4i|0R|06j3RI0T.g.ic04c2h9h3iiR1||j4jRgT..g4cii0d3h6e8ilM9V||9j2Rg..R3cid2iOre1A|3l|03S.G.22mR0p9Oa7u8A37cn2B|..4|mGTAd6S10MaeTAP20cnB3AP.|.|m4AGBdG7aeM0AD0Tcn5S9E.|0Ab|m4aA7T.BG240acMAD6051oc.MT|AE7T7.m|0ATS7Gc50iaA0Ma56ri0|Rc8.5.c9mA0|5TcAo73G30aAh98Mi24|c0R5.3j8.mA|78TgA6ci71GA0ahTM1i10Rc|.000.j9mA|99AdgTiAG7a6eM01lR6.c60|.m45A|7dRA3ATa7Ge6lMO0.3c|Mm03.35|AR5ABgTalGG5MOU.0co1.d1|30|2A3AegB1mi4GTGnM3M.a171.d0|l2y16B63A|Be2a442TDgPGrn.iT.|6610d|E7s105g48BSeti12T6r6TnD3|P.071.0T0p|2EC22B8g1B0u8r262TP7DnQ.8.a7Td90||E6gMSS90e93rP3T15CP.n3a.6p7|G0|6PgB9Bu36TP9a4CG.1ntD1.d|GG1|S70nEeS0gTTi26e.Hn9TPp.031Go|9B0|au2BP303G3g.1nn88iDG.d9t3S2n|T75re|TSE0F0j630.8.a0n6pPT6g0|02ijA|6um70PBT61gC.5in3e3.09mGD6A955|d3p99S|E0TPa8.0u7.3gmtP0Si0c6T8|87p9l|3P9Sa.0gA7.ip3a90Nl1cG|M3u7j3a|4D.0A9Tn.g2hcA0iF|32sM|01a18SGg.G45qi7eg.9FA4P91u73s|r5|S.g1G3a76P3.op8Fg|Ti9i74|6cj31xG3F.C30303ogv0y7.MiG00997e|c23L8iFm75T..1S|r59Ma3n6O|3b02|g42GLFin8i6.29.gTTX2cVi73ia09|b59|1i0B.Gg200Ec1Tg.3rCci1e9i2r|201Gd03S41|.9e6.7gg3Vme02i6078|2pi1An2g1.341|.i50VdTul177i26|4143BAa0gn3m.10.24|0G7a94hiTDa103763A8S6lm0|..Mbc04E914T9gg8|5Pa|9A26T6m40ir.gG.A2c3Pp0a160|36aiA04m3aoM|M7.112GcAg36|0a.1a7A000AmNig.5.9M32Ac|5o79|MrS9aG7.m14N9A.r65|Mtc1AG8ye01A|M2p3a.CG4A|2ct71.M0cGuMPA|1R|84C.rcg94GT.ntiAa5GTM4|9GAhRr31i00c.S3|3|.1GgGe0S92N8AMhGR51I1.cBiTl190|.4s|1PoGC0g0R0jAh006.S67ic1d2|.Pf|12Ti7g9UCM9Gju38li6eB.1|d40l91Gs98.gg294c|10THR8iP.e8V63c6c70li0Tg|.0069Ri9R1|9Gg6P6l.T2r0T2rd0|953.Tt|5R8R1Oig4aC0rT.08T91ec21200.ti06lMT4i|RO|730e25|01.h344bcg5400iRs.7GrHT4R0|5.6T3ghi0j6.a|crRi1TP0i27g61G0|0huO.3gd6trj.R80pTi89i||07.2Pf9e131gjcMn3.9T.2|u7gl00i58jmT2|0Rh31cGgo2T2.l.5i72i79|R1090rhR70|.Ticd0j4aej.018i00u53gicR83A2e9|.O3|2g.rlj29936bR9TigTh||tci205.q11.1gToMi581530A0|04dbi.hi37|.T7ug1U13junAviT8dG5545ee.14.0|6C|gAi961.jbeg|l8ge30g8.C68inA06g|09mg7o9l.l.MmTryP12iR673|i0|dg3oi.33P|.t6C3gpR042nga7cP86a.|0C.0eaeO20.Fbl2Uig|55aie2y.T0O3|gGt3.agA5r36pi.2g|r|6H3s.A99|p9o0.0i0Dr71r1mgaiAg04gm3.o5ri.tG34G|aA2|08|12f..iiS2TtAr6e0|g28gigG.L0siaf.rA371|7|ge200LssA9m.0uc.504iC5eiaCP6.5A.i|9.Cnns025P13iSTd5601c0|1.qgo.l6b6P0mS62||.6M5gYafGbCp.|QiSn.1j100g2M1otC|81015.DBiul..rd81Cg.Mci7ngC5AC9CLLe9gC1.3aaip|ccsil|y.|0|2148i1m24.1.m4T.cg|aMi61|jji1ig9l..i25i.5..0.rf0c.|n|hf.t.ug1ggg.|.i.1g8.64.cg038h21e7e9g|2ugglicio|7piGgc8a9ta1ih5p69eug|j|31a|griti1i0i70r|o440u95|6a0g97glol381rii1gl6T||l|6i6|lg1la86oajo2o12|ris232ig3rgi9Yb7abg0865mg983Ti14j|i74n3i91|15i7|70|9i|55pg3|r|2|g|6321S216i11i7|1|g|7i968g5iA6g2g78gg07837|35|143592ggg1|570|i4i54g891g737084i948a1ij21j3i60i2ii48339355L225ii1ig6g26281128261i49i16340116513i483420316632134I215c4i7i45066446785879T80293987256165985553265o01296625099T93123592C49840424740255444069519534317792207006436539764119928665257256311692444021509797877124665044868816488668359027349357640530885779770105345649975438261010044505558089p15 FIGURE3|MaximumlikelihoodphylogenyofdivisionsIIandIIICHSs.ThephylogenetictreewasconstructedusingPhyML3.1.TheSH-likesupportof approximatelikelihoodratios(aLRT-SH)areplottedascirclesonthebranches(onlySH-likesupport>0.8areindicated).Colorsofbranchesindicatecorresponding classes.Thescalebarcorrespondsto0.5aminoacidsubstitutionpersite.Forabbreviationsoffungi,pleaseseeTableS1. weretemporarilylabeledas“others”(OTS)(Figure1).Division Domain Architectures of CHSs are III is comprised of three distinct orthologous clades. One of Consistent in Divisions I and III but Diverse them (class VIa) corresponds to class VI defined previously in Division II (Munro and Gow, 2001). The other two orthologous clades Besides the three CS1N, CS1, and CS2 domains, no additional (classes VIb and VIc) are reported for the first time in this domains were identified in CHSs of division I (Figure2). study. Likewise, no other domain was found in CHSs of division Comparison of sequence identity of CHSs showed that III besides the CS2 domain, but most CHSs of division II membersinthesameclassaremorecloselyrelatedtoeachother, alsocontaintheCytochromeb5-like(Cyt-b ,PF00173)domain 5 butdistantlyrelatedtomembersinotherclasses(FigureS1).Each (Figure3).Thisdomainisabsentfromsomemembersofclasses class formed a distinct group. These results are consistent with IVa and IVb in division II. The Cyt-b domain can bind heme 5 thoseofourphylogeneticanalysis.CHSsofdivisionIIIaremore andsteroidsinelectrontransfer(SchenkmanandJansson,2003), similartothoseofdivisionIIthandivisionI. buttheligandforthisdomaininfungalCHSsisunknown.An FrontiersinPlantScience|www.frontiersin.org 5 February2016|Volume7|Article37 Lietal. FungalChitinSynthaseGeneFamily A G.pro|jgi209559 B S.pun|SPPG 00288T0 G.pro|jgi98390 F.gra|FGSG 03170T0 G.pro|jgi57357 F.gra|FGSG 06550T0 G.pro|jgi113727 FF..ggrraa||FFGGSSGG 1102621997TT00 A.mac|AMAG 05239T0 B.den|BDET 08098 VI A.mac|AMAG 00190T0 O.sp|jgi1182300 A.mac|AMAG 10750T0 A.ory|gi 317150795 A.mac|AMAG 02955T0 M.ory|MGG 06064T0 A.mac|AMAG 10238T0 F.gra|FGSG 01949T0 A.mac|AMAG 08465T0 AN..mcraac|N (C6 Ug0e5n2e6s)8T0 A.mac|AMAG 14613T0 C.cor|jgi80336 A.mac|AMAG 17040T0 A.mac (2 genes) A.mac|AMAG 12350T0 C.rev|jgi79855 A.mac|AMAG 05690T0 R.del (3 genes) A.mac|AMAG 12344T0 G.pro|jgi157224 C.rev|jgi79909 O.sp|jgi1187618 S.pun|SPPG 05446T0 CR..rirer|vjg|jgi6i970875039 S.pun|SPPG 07609T0 VIII C.cor|jgi43134 O.sp|jgi1189321 R.all|jgi3847 O.sp|jgi1191081 O.sp|jgi1174053 B.den|BDET 08281 R.irr|jgi344952 S.pun|SPPG 04845T0 R.all|jgi3453 B.den|BDET 08415 EV..bcuiel| V(2C5U gGe n0e0s6)84T0 S.pun|SPPG 05605T0 E.cun|ECU01 1390.1 O.sp|jgi1181464 A.alg|H312 02655T0 O.sp|jgi1174333 E.aed|EDEG 01376T0 O.sp|jgi1190690 A.mac (6 genes) S.pun|SPPG 09498 G.pro|jgi45170 B.den|BDET 05228 O.sp (2 genes) R.irr|jgi225626 S.pun|SPPG 03909T0 R.irr|jgi95067 C.cor|jgi43661 R.del (2 genes) G.int|jgi121158 C.cor|jgi7537 IVa G.int|jgi318355 C.cor|jgi21721 U.may|gi 71020413 C.rev|jgi46483 F.med|gi 393218266 P.gra|PGTG 21586T0 S.com|gi 302694783 SU..cmoamy||ggii 37012061947495467 R.del|RO3G 00942T0 F.med|gi 393213109 R.del|RO3G 08861T0 R.del (4 genes) L.elo|gi 149235438 S.cer|6319497 AS..oceryr||g6i3 31197511527775 II FA..gorray||FgiG 3S1G71 0319257920T0 F.gra|FGSG 02483T0 NM..corray||NMCGUG0 90392946T20T0 M.ory|MGG 04145T0 R.all|jgi926 N.cra|NCU05239T0 S.pun|SPPG 07620T0 R.del|RO3G 08099T0 B.den|BDET 01759 R.del|RO3G 11900T0 R.del (3 genes) R.del|RO3G 00522T0 A.mac|AMAG 06169T0 R.del|RO3G 16230T0 G.pro|jgi70638 S.pun|SPPG 05426T0 GG..iinntt||jjggii332389522401 CB..dreevn| jg(2i3 g0e1n2e6s) IVb G.int|jgi67365 C.cor|jgi58605 G.int|jgi35412 R.irr (5 genes) F.med|gi 393217420 C.cor|jgi78977 S.com|gi 302681663 R.del (2 genes) P.gra|PGTG 03325T0 PP..ggrraa||PPGGTTGG 0098973390TT00 U.may|gi 71003910 I U.may|gi 71022795 U.may|gi 71003886 S.com|gi 302680496 P.gra|PGTG 10666T0 F.med|gi 393217767 S.com|gi 302696351 O.sp (2 genes) F.med|gi 393212940 O.sp (3 genes) F.med|gi 393212941 GS..ppuron||jSgiP1P19G8 0832289T0 S.cer|330443698 S.pun|SPPG 03084T0 L.elo|gi 149235319 B.den|BDET 02397 L.elo|gi 149245816 A.mac (3 genes) A.ory|gi 169783242 G.pro|jgi289059 F.gra|FGSG 10327T0 S.pun|SPPG 07669T0 N.cra|NCU04251T0 A.mac (2 genes) O.sp|jgi1183098 M.ory|MGG 09551T0 C.cor|jgi42612 P.gra|PGTG 02527T0 R.all|jgi3114 P.gra|PGTG 20839T0 A.mac (10 genes) P.gra|PGTG 17815T0 O.sp|jgi1183097 U.may|gi 71023109 S.pun|SPPG 03441T0 F.med|gi 393215655 S.pun|SPPG 00937T0 S.com|gi 302696797 SB..pduenn| S(2P gPeGn e0s6)659T0 A.ory|gi 317140613 III B.den|BDET 03308 A.ory|gi 169762508 B.den|BDET 03306 A.ory|gi 317146829 S.pun|SPPG 06138T0 A.ory|gi 169777897 B.den (2 genes) M.ory|MGG 01802T0 C.rev (3 genes) N.cra|NCU03611T0 RR..idrre|lj g(i63 4g8e5n4e6s) F.gra|FGSG 03418T0 S.com|gi 302683558 0.2 F.gra|FGSG 10116T0 F.med|gi 393216324 V Color ranges: U.may|gi 71018241 A.ory|gi 169774657 N.cra|NCU04352T0 Zygomycota M.ory|MGG 13013T0 Entomophthoramycotina F.gra|FGSG 01964T0 C.rev (4 genes) Chytridiomycota C.cor (5 genes) R.irr|jgi346613 Cryptomycota R.del (2 genes) Neocallimastigomycota U.may|gi 71017937 Glomeromycota SP..cgoram|P|gGi T3G02 0649438338T10 VII Ascomycota FA..moreyd|g|gi i1 36993727146625558 Basidiomycota N.cra|NCU04350T0 Microsporidia 0.5 MF..gorray||FMGGSGG 1 132001349TT00 FIGURE4|MaximumlikelihoodphylogeniesofCHSgenesfromearly-branchingfungi.(A)DivisionI.(B)DivisionsIIandIII.Phylogenetictreewas constructedusingPhyML3.1.TheSH-likesupportofapproximatelikelihoodratios(aLRT-SH)areplottedascirclesonthebranches(onlySH-likesupport>0.8are indicated).Colorsofbranchesindicatecorrespondingclasses.Forabbreviationsoffungi,pleaseseeTableS1. FrontiersinPlantScience|www.frontiersin.org 6 February2016|Volume7|Article37 Lietal. FungalChitinSynthaseGeneFamily N-terminalmyosinmotor-likedomain(MMD,PF00063)anda together (Figures2–4), suggesting that they were derived from DEKC-terminal(DEK_C,PF08766)domainalsoexistinclasses species-specific expansions. In fact, the genome of Rhizopus VandVIICHSs.TheMMDassiststhelocalizationofCHSstothe delemarunderwentawhole-genomeduplicationandrecentgene hyphaeviainteractionwiththeactincytoskeleton,andfacilitates duplications(Maetal.,2009). polarizedexocytosis(Tsuizakietal.,2009;Schusteretal.,2012). Notably, duplications in members of class III were most TheDEK_CdomainisrelatedtotheC-terminalofanimalDEK common in plant or animal pathogens within Aspergillus spp., protein,whichisresponsibleforself-multimerizationandDNA Fusarium spp., and Pucciniomycotina. Since the class III CHS binding(Kappesetal.,2004).Nevertheless,theroleoftheDEK_C has been experimentally demonstrated to play important roles domaininfungiremainstobedetermined. during host infection in the rice blast fungus M. oryzae (Kong et al., 2012), the expansion of this class in pathogenic fungi Variable Numbers of CHSs in Different may be related to infection and pathogenicity of these fungi. Furthermore,theclassesVIbandVIcCHSsoccurredmainlyin Fungal Lineages plantpathogensfromSordariomycetesandDothideomycetes. YeastsgenerallycontainfewCHSs(Figure1).Forexample,the fission yeasts possess only two CHSs, the fewest copies among all fungal lineages, which may be related to the absence of Specificity-Determining Sites Responsible chitin in their vegetative cell walls (Free, 2013). The budding for Functional Divergence in the CHS Gene yeastS.cerevisiaeharborsthreeCHSs.Filamentousfungiusually Family contain a larger number of CHSs. For example, the cereal Previous studies have revealed that CHSs of several classes pathogen Fusarium verticillioides has 13 CHSs, the highest perform different functions in fungi (Silverman et al., 1988; numberofcopiesamongthelater-branchingfungi,ascomycetes Cabib et al., 1989; Shaw et al., 1991; Kong et al., 2012). It and basidiomycetes. On the other hand, the early-branching is known that functional divergence commonly results from fungi, chytridiomycetes, entomophthoromycetes, zygomycetes, theshiftsatspecificity-determiningsites(Gu,2001).Therefore, and glomeromycetes, generally possess more CHSs than the we examined CS domains among the orthologous classes for later-branchingfungi(Figure1),likelybecausethecellwallsof functionalspecificity-determiningsites. early-branchingfungicontainahigherpercentageofchitinthan In division I, we identified 15 specificity-determining sites those of later-branching fungi (Ma et al., 2009). Unexpectedly, (Figure5). Four of them are likely related to type I functional the zygomycete Rhizopus chinensis has 44 CHS genes, the divergence. Residues at these sites are conserved in one largestnumberofCHSgenesdiscoveredtodate.Microsporidia orthologous clade but highly variable in the other clades, generally contain one CHSs, but Enterocytozoon bieneusi has indicating that functional constraints have changed between many more CHS genes than other species in this lineage, them (Gu, 2001). The remaining 11 sites are related to type II consistentwithapreviousreport(Pacheco-ArjonaandRamirez- functional divergence. Residues at these sites are conserved in Prado,2014). different clades but their properties are dissimilar, which could leadtofunctionalspecificationswithinagenefamily(Gu,2001). Frequent Duplications and Losses of CHS Ten specificity-determining sites are potentially responsible for Genes in Different Fungal Lineages the functional divergence between class III and the other three The classes IVa, IVb, VIa, VIb, and VIII occur in both early- classes. In addition, the residue at site 180 is Phe (F) in classes branchingfungiandlater-branchingfungi(Figure1),suggesting III and VIII, while the corresponding residue in classes I and that they were generated in fungal ancestors. However, during II is Tyr (Y). Functional divergence of class II from the other subsequent evolution, the class VIII was lost in all ascomycetes three classes may be due to a shift at site 460 from Ser (S) and most zygomycetes. In addition, the class III was lost in to Ala (A). In division II, we identified 12 type II specificity- all early-branching fungal lineages, in agreement with previous determining sites. Residues at all of these sites in classes IVa reports (Ruiz-Herrera and Ortiz-Castellanos, 2010; Pacheco- and IVb are distinct from those in classes V and VII. At site Arjona and Ramirez-Prado, 2014). The class IVb was lost 123, functional divergence of class IVa from class IVb may be in all ascomycetes but not in the archiascomycetous yeast due to a shift from His (H) to Phe (F). At site 344, functional Saitoellacomplicata.TheclassIVawaslostinindividualfungal divergence of class V from class VII may result from a Ser lineages, such as fission yeasts. The classes VIa and VIb were (S) to His (H) shift. In division III, we identified four type lost in basidiomycetes and most of early-branching fungi. II specificity-determining sites. Residues at these sites differ Unexpectedly, in contrast to other yeasts that retained only among the three classes. For example, the residues at site 209 the classes I, II, and IVa, Yarrowia lipolytica and S. complicata are Cys (C), Thr (T), and Ser (S) in classes VIa, VIb, and VIc, containedmostoftheorthologousclasses. respectively. In addition to gene losses, duplications of the CHS Most of the specificity-determining sites are adjacent to or genes occurred frequently in different fungal lineages during located at the functionally or structurally important sites of evolution. For example, members of class I were duplicated CHSsidentifiedbyConSurf(Figure5;FiguresS2–S4;Ashkenazy in Basidiomycota, Zygomycota, and Candida species. CHS et al., 2010). For example, in division I, type II specificity- genes in each class were duplicated multiple times in early- determining site 80 is directly involved in ligand binding branchingfungi,andthosefromonespeciesgenerallyclustered (Figure5).Thisshiftprobablyaffectsthechemicalconformation FrontiersinPlantScience|www.frontiersin.org 7 February2016|Volume7|Article37 Lietal. FungalChitinSynthaseGeneFamily CS1N CS1 Partial CS2 ① ② ③ ④ ⑤ Class (cid:3413) (101 seqs) n I Class (cid:3414) o (62 seqs) si vi DiClass (cid:3415) (96 seqs) Class (cid:3420) (19 seqs) f s sffff fff ss f ff f fffs s ssff ffsfs f s sssssfsss fsfff fsssssffsss ffff fssfssfss ss s s ffffff Class (cid:3416)a (97 seqs) n IIClass (cid:3416)b o (36 seqs) si vi Di Class (cid:3417) (93 seqs) Class (cid:3418)(cid:44) (90 seqs) f fff ss s s ffffs f f ssff sff s f ss fs f s sssss sf fss ssfff s f sf ffsfssfs sf s ss s s s ff sf Class (cid:57)(cid:44)a n III (49 seqs) sio Class (cid:57)(cid:44)b vi (21 seqs) Di Class (cid:57)(cid:44)c (7 seqs) f f f ss fffff ssf s s ff ff s sffs f f ffff s s s f sf ffffs ss fff ff FIGURE5|ConservationanddiversificationofCSdomainsinthefungalCHSgenefamily.SequencelogosindicateconservedsequencepatternsofCHS domainineachclass.BlackhorizontalbarsindicateregionsofdomainsthataredefinedbythePfamdatabase.Redhorizontallinesindicateconservedfunctional motifsaccordingtotheCDDdatabaseofNCBIandthepreviousstudy(Zakrzewskietal.,2014):À,ligandbinding;Á,metalionbindingsite;Â,donorsaccharide binding;Ã,acceptorsaccharidebinding;Ä,productbinding.Greenshadedregionsrepresentsitesthatareconservedacrossallclasses.Redandbluetriangles indicatetypeIandtypeIIspecificity-determiningsitesidentifiedbySPEER-SERVER(Chakrabortyetal.,2012),respectively.Thelettersfandsrepresentfunctional sitesandstructuralsitesidentifiedbyConSurf(Ashkenazyetal.,2010),respectively. of CHSs. Additionally, in division II, the structural site 346, Members of Classes III and VIb CHS Genes which may have undergone type II functional divergence from are Specifically Up-Regulated during division I, is adjacent to the acceptor saccharide binding Infection sites. This shift may affect the interaction between CHSs and acceptors. Previous studies have experimentally demonstrated Because classes III, VIb, and VIc were mainly retained or twofunctionallyimportantmotifsEDRXLandQRRRWofCHSs expanded in important pathogenic fungi, we examined the thatareresponsibleforacceptorsaccharidebindingandproduct expression of these CHSs during infection. In the wheat scab binding in yeast (Nagahashi et al., 1995; Choquer et al., 2004; fungus Fusarium graminearum,oneoftwoparalogsofclassIII Zakrzewskietal.,2014).Thesetwomotifsarewellconservedin CHS genes (FGSG_10116) was specifically up-regulated during allclassesofCHSs,confirmingtheircriticalroles.Interestingly, spikeinfectionofbarleyandwheat(Figure6).ThisclassIIIgene fourfunctionalspecificity-determiningsitesareadjacenttothese hadthehighestexpressionchangeduringhostinfectionrelative twomotifs.Thesite409upstreamthreeresiduesoftheEDRXL to other CHS genes, in agreement with the results of a recent motif underwent alteration in class III CHSs from Tyr (Y) study (Cheng et al., 2015). Deletion of this gene was lethal to to Phe (F). Likewise, the site 462 downstream six residues F. graminearum (Cheng et al., 2015). Its ortholog in M. oryzae of the QRRRW motif underwent alteration in class III CHSs (MGG_01802)wasresponsibleforvirulence(Kongetal.,2012). from Phe (F) to Ala (A). These sites may be responsible for In the stem rust fungus Puccinia graminis f. sp. tritici, one of functionaldivergenceofclassesIIIandtheotherthreeclassesof thethreecopies(PGTG_02527)ofclassIIICHSswasalsohighly divisionI. inducedduringinfectionofwheatandbarley(FigureS5A).These FrontiersinPlantScience|www.frontiersin.org 8 February2016|Volume7|Article37 Lietal. FungalChitinSynthaseGeneFamily A1.5 B2.5 1.0 2.0 Expression change ----002110......050505 Expression change0011....0505 -0.5 -2.5 -7.0 -1.0 -7.5 -1.5 0 h 2 h 8 h 24 h 0 h 24 h 48 h 72 h 96 h 144 h C4.0 D3.5 3.5 3.0 ession change 11223.....05050 ession change1122....0505 Expr00..05 Expr00..05 -0.5 -0.5 -1.0 -1.0 -1.5 -1.5 0 h 24 h 48 h 72 h 96 h 144 h 192 h 0 h 24 h 48 h 72 h 96 h 144 h a a b b b FIGURE6|ExpressionprofilesofCHSgenesduringdifferentstagesinFusariumgraminearum.(A)Conidiagermination.(B)Sexualdevelopmentinvitro. (C)Infectionofwheat.(D)Infectionofbarleyspikes.Ineachcondition,themeanvaluesofRMAnormalizedexpressiondataofthreeindependentbiologicalduplicates wereanalyzed.Alltime-seriesweretransformedto(0,v_1-v_0,v_1-v_0,...,v_n-v_0)sothatthetimeseriesbeginsat0. resultsindicatethattheorthologousclassIIIinpathogenicfungi enrichment analysis showed that, beyond chitin biosynthesis, mayperformimportantfunctionsduringhostinfection. genes involved in ascospore formation, phenotypic switching, One CHS gene of class VIb (FGSG_06550) from positive regulation of endocytosis, and response to salicylic F. graminearum was highly induced during the later phases acidweresignificantlyenrichedintheseconservedorthologous of infection (Figure6). Its ortholog (GI: 310801203) in the genes (Figure7C; Table S3). These results indicated that the maize anthracnose fungus Glomerella graminicola was also CHS-associatednetworkislikelyrelatedtofungalpathogenicity. up-regulated during infection and had the highest expression In F. graminearum, ascospores are the primary inoculum for level in the necrotrophic phase among all CHSs (Figure S5B), infecting wheat and barley (Trail et al., 2002). In addition, suggestingthatthisclassVIbCHSisimportantforpathogenesis. salicylic acid (SA) is considered to be a key plant defense In addition, genes in classes V (FGSG_01964) and VII hormone. A previous study demonstrated that U. maydis (FGSG_12039) were highly induced during host infection. could sense and restrict the SA-levels of host plants to assure PreviousstudieshavedemonstratedthattheclassesVand/orVII colonizationsuccess(Rabeetal.,2013). CHSs are required for pathogenicity in many plant pathogens, We identified the putative protein complexes or parts of suchasF. graminearum,F. verticillioides,Fusarium oxysporum, pathways hidden in the CHS network of F. graminearum M. oryzae, G. graminicola, and Ustilago maydis (Madrid et al., constructedfromtheevidenceofgenomiccontext,experiments 2003; Garcerá-Teruel et al., 2004; Werner et al., 2007; Martín- and text-mining. Among the 171 genes in the network, six Urdíroz et al., 2008; Kim et al., 2009; Treitschke et al., 2010; interactionclustersweredetectedandfoundtobecomprisedof Larsonetal.,2011;Kongetal.,2012). 20,34,17,7,5,and3genes,respectively(Figure8A;TableS4). Based ontheexpressiondata downloaded from PLEXdb(Dash The CHS-Associated Network is etal.,2012),mostofthegenesintheseclusterswereup-regulated Conserved in Pathogenic Fungi during the later phases (72, 96, or 144h) of wheat infection. To better understand the functional conservation of CHSs in Althoughsomegenesexhibitedtheoppositeexpressionpattern, pathogenic fungi, we compared functional protein-associated the entire clusters seemed to be co-regulated. For example, networks involved in chitin biosynthesis, constructed based on contrary to most genes in cluster 2 that were induced along co-expression evidence and experimental evidence from the the timeline, five genes in the same cluster were repressed STRING database (Szklarczyk et al., 2015) in three important (Figure8B).Theseresultssuggestedthatgenesintheseclusters pathogenicfungi.Atotalof57,39,and36genesweredetermined might play important roles in the necrotrophic phase of F. tobefunctionallyassociatedwiththeCHSsinF.graminearum, graminearum.Furtherfunctionalenrichmentanalysisindicated M. oryzae, and U. maydis, respectively (Figure7A; Table S2). thatgenesincluster2areinvolvedinvariousprocesses,suchas In the three CHS-associated networks, about half of the pathogenesis,theMAPKcascade,smallGTPase-mediatedsignal genes were conserved (Figures7A,B). Gene ontology (GO) transduction,transmembranereceptorproteinserine/threonine FrontiersinPlantScience|www.frontiersin.org 9 February2016|Volume7|Article37 Lietal. FungalChitinSynthaseGeneFamily A FGSG_08635 FGSG_01273 FGSG_08629 FGSG_11793FGSG_06550FGSpGp_03F481GSG_10161pppppppppppppppppppppFGSG_10691ppppFGSG_01948pppFpGSG_01p9p94ppppppppppFGSG_pp0pp3p5p4p4pppppppFGSG_1p2p551ppFGSG_108pp59ppppppppppppppppppppppppFpGSG_04164pppppppppppppFGSG_120p93ppppppppppppppppppppppppppppppppFGSGp_pppp0ppp6594pppppFpGSpppppppG_pppp06425ppppppppppFGSppGp_p07p53p0ppppppppppppppppppppppFGSG_1p2pp279ppppppppppppppppppFppppGpppSFpGG_S0G5_613609p29pppppppFGSGpp_pp1p0ppp0pp43pppppppppppppFpGSG_02438ppppFGSG_0ppp3pp107ppppFpGpSG_0042p5pppppFGSGp_p011pp81ppppppFGSG_05874ppppppppppppppppppppppppppppFFGGSSGG__10p01pp327p227ppppFGSG_00764pppppppppFpGSG_0845p7pppppppppFGSG_01946ppFGSppGp_pp1pp1p977pppppppppppppFGSG_06999ppppppppppppppppppppppppppppppppppppppppppFGSGF_G0pF1SpFG9GG5S_6pSG0pG8_7p0_p670897p43ppFp64G3SppG_06767ppppppFGSpGp_02022pppppppppppppppppppppppFGSGp_p09582ppppFGSGp_p10061ppppppppppppFGSG_08719pppFpGSG_0F69G5Sp7pGp_pp109pp41ppppppppppppppFGpSpG_10145FGSG_0705p4pppppppFGSG_10048FFGGSSGG__10028762p1p9ppppppppFGSG_02pp014ppppFGSG_06998FGSG_07311 FGSG_09492 FGSG_07443 MG_G06389MGG_09878 MGG_07928 MGG_03958MGG_01105ppppMGG_11479ppppppppppppMGG_0M1G3G1_08pp6pp044MGGp_0p1p2p82ppppppppMppGG_00307ppMGG_01708ppppppppppppppMppGG_12117ppppMpGGp_01656ppppMGG_00865ppppppppMGG_06759ppppppMGG_13031ppppMGG_03876pppppMpGG_08747ppppMGG_14966MGG_09195ppppppppppppppppMMGGGp_Gp0_1091M228G6G_812812ppMGGp_p04154ppppppppMGG_06p3p0p2ppppppppppppppppppppppppppMpppMGpGppG_G0p_41p7340014pppppppppMGG_018Mp0pG2G_04172pppppppppppppppppppppppppppppppppppMGG_1p2p93pp9ppppMGG_0604pp6ppppMGG_0955ppp1ppppppppppppppppMGG_08087ppppppppppppMpGG_03M46GG1_05032pppMpGG_09926ppppppppppppppMGG_p0p836p5pppMGG_05882 UM05401 UM04250UM05228ppppUM04358ppUMp0p4588UM00392ppppUM01963pppppUpM06155ppppppppppppppppppppppppppppUM04741ppppUM02p4p06UMpp0207p3pUMpp04655ppUM03204ppppppppppppppUM00462UM02554UpMp0p0p63p8ppppppppppppppppppppppUpM02p6pp8p9UM0p1p748UM03p62p8ppppppppppppppppppUM0p0p447UM00612ppppppppppppppUM029p5pp6pUM01788ppppppUppMpp03400ppppppppppppppppppppppppppppppppUMpp0pp5279ppppppUUMM0054428900ppppppUM01143pppppUpM01p06p4ppppppppppppppppUpppMp06398ppppUM02019pUpM03p20p5pppppppppppppppppppUpMp05763 UM03213UM02840 UM03465 FGSG_08468 Fg Mo Um Orthologs found in: All networks Networks of Fg & Mo Networks of Fg & Um Only one network B C GO:0009751 response to salicylic acid 1 17 Fg Mo GO:0008361 regulation of cell size Number of genes GO:0045807 positive regulation of endocytosis 16 12 4 GO:0036166 phenotypic switching GO:0071704 organic substance metabolism Enrichment factor GO:0006807 nitrogen compound metabolism 18 (23,23,22) GO:0051704 m 6 0 GO:0006031 chitin biosynthetic process GO:0034605 cellular response to heat GO:0022607 cellular component assembly 8 GO:0005975 carbohydrate metabolism GO:0030476 ascospore wall assembly Um GO:0003774 motor activity GO:0004100 chitin synthase activity MF ransferase activity GO:0016810 hydrolase activity, acting on but not peptide) bonds 0 0 4 6 8 FIGURE7|CHS-associatednetworksinFusariumgraminearum,Magnaportheoryzae,andUstilagomaydis.(A)CHS-associatednetworksinthreeplant pathogens.Nodesandedgesrepresentgenesandfunctionallinks,respectively.Nodecolorsindicatetherangeoforthologgroupsthatappearinthreenetworks.(B) Venndiagramforthedistributionoforthologgroupsinthethreenetworks.Numberscorrespondtoorthologgroups,whilethenumbersinbracketsrepresentthetotal numberofgenes(Ordering:Fg-Mo-Um).(C)SelectedGOtermsenrichedinorthologgenesthatareconservedinthethreenetworks.Thecirclecolorsindicatethe numberofgeneswitharelevantGOterminthetestset.ThecirclesizeindicatestheratioofthepercentageofgeneswithrelevantGOtermsinthetestsettothatin thereferenceset(enrichmentfactor).Fg,F.graminearum;Mo,M.oryzae;Um,U.maydis.PleaseseeTablesS2,S3formoredetailedinformation. kinase signaling pathway, and ascospore formation (Figure8C; the number of CHS genes among different fungal lineages. Table S5). Many of these processes are related to fungal Phylogenetic analysis revealed that the fungal CHS gene family pathogenicity(Bölker,1998;Xuetal.,1998;BeyerandVerreet, is comprised of at least 10 ancestral orthologous clades, which 2005). In addition, cluster I includes acetyl-CoA carboxylase have undergone frequent duplications and losses in different and aspartate carbamoyltransferase, which are essential for the fungal lineages during evolution. Our results showed that CHS survivaloffungiduetotheircrucialrolesinthebiosynthesisof genesinclassesIIIandVIbhaveexpandedorhavebeenretained fatty acids and pyrimidines (Simmer et al., 1990; Tong, 2005). in pathogenic fungi and that they likely perform important Furthermore, calcineurin subunit B (FGSG_07404) in cluster 4 functions during host infection. Comparative analysis revealed isinvolvedintheadaptationtopheromoneduringconjugation that CHS-associated networks are conserved among important with cellular fusion, which is essential for normal vegetative pathogenicfungi,andparticipateinvariousimportantprocesses, growthinNeurosporacrassa(KotheandFree,1998). including sexual reproduction and plant infection. In addition, many specificity-determining sites are located at or adjacent to CONCLUSIONS important sites such as ligand binding and acceptor saccharide sites of CHSs and probably lead to functional diversification in We systematically identified and compared CHS genes across theCHSgenefamily.Thesespecificity-determiningsitesmaybe 109 representative fungi from Ascomycota, Basidiomycota, attractivetargetsforfurtherstructuralandexperimentalstudies. Cryptomycota, Microsporidia, Chytridiomycota, Zygomycota, Results from this study elucidated orthologous and paralogous Neocallimastigomycota, Entomophthoramycotina, and relationships among various CHS genes and provided new Glomeromycota. Comparative analysis revealed diversity in insightsintotheevolutionandfunctionofthefungalCHSgenes. FrontiersinPlantScience|www.frontiersin.org 10 February2016|Volume7|Article37
Description: