ebook img

EVALUATION OF BIOCHAR SOIL AMENDMENTS IN REDUCING SOIL AND WATER POLLUTION ... PDF

149 Pages·2013·6.31 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview EVALUATION OF BIOCHAR SOIL AMENDMENTS IN REDUCING SOIL AND WATER POLLUTION ...

EVALUATION OF BIOCHAR SOIL AMENDMENTS IN REDUCING SOIL AND WATER POLLUTION FROM PATHOGENS IN POULTRY MANURE By Shoieb Akaram Arief Ismail TITLE Department of Bioresource Engineering Macdonald Campus, McGill University Montreal, Quebec A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science March, 2013 ©SHOIEB AKARAM, 2013 This thesis is dedicated to my lovely parents, Mr and Mrs Arief Ismail, my dear sibling, Sumaiya Nausheen, my brother in law, Mr Asif Syed and to all my friends who accompanied me in this journey. ii ABSTRACT This project addresses concerns from the Canadian public about the quality of water in regions where many agricultural operations are located. In regions where numerous intensive livestock operations (ILOs) are found, manure is disposed by land-spreading and consequently elevated concentrations of fecal coliforms may find their way into surface waters. Fecal coliforms are endemic in poultry and are difficult to eradicate from production facilities. Poultry manure is a reservoir of Campylobacter jejuni, Escherichia coli (including O157:H7) and Salmonella spp. Biochar, the charcoal produced from pyrolysis of biomass, is gaining global recognition due to its unique properties when applied as a soil amendment. Biochar possesses a large surface area and develops high surface charge as it weathers in soil. Biochar could play a potentially important role in controlling the mobility of pathogens in soil and water environment. Its half- life is estimated to be hundreds of years so it is expected that its role in reducing agricultural pollution could be very long-lasting, and hence very cost-effective. In this study we investigated the effectiveness of biochar in preventing the leaching of fecal coliforms into surface water. The target organisms in this study were Escherichia coli (E .coli) and total coliform. E. coli is widely recognized as the indicator organism for presence of fecal coliform and total coliforms to determine disinfection rate. The study was divided into two components, namely laboratory study and field study. In laboratory study, the effectiveness of three different types of biochar (variation based on production temperature, time and raw material) in adsorption and desorption of E. coli was studied. In adsorption test, a comparative analysis was carried out to understand the differences between biochar, soil amended biochar (soil to biochar ratio of 99:1) and un-amended soil in the removal of E. coli. The statistical analysis showed the adsorption of E. coli was significantly higher (P < 0.0001) in the soil amended biochar treatment. The soil amended biochar and the un- amended soil treatments were further subjected to desorption to test their retention capacity. The statistical analysis showed that two types of soil amended biochars (slow pyrolysis biochar and fast pyrolysis biochar) retained E. coli significantly better. The adsorption capacity of biochar was directly proportional to its porosity and inversely proportional to its ash content. The two iii types of soil amended biochar were shortlisted based on sorption and retention capacity and were used as treatments in the field study. A sixty-day study was conducted using field lysimeters to evaluate the effectiveness of soil amended biochar in removing or reducing the leaching of fecal coliforms (E. coli) from poultry manure. Lysimeter with only soil was used as control and the shortlisted biochars (slow pyrolysis biochar and fast pyrolysis biochar) were used as treatments. In the biochar-amended treatments, the top 0.05 m of soil was amended with biochar in a proportion of 1:99 biochar:soil. Poultry manure was spread over the soil in all lysimeters. The lysimeters were protected from natural rainfall, and the simulated rainfall was applied as 4 events over a sixty day period. Both soil (3 sampling depths) and leachate samples were collected and analyzed at predetermined time intervals. In the experiment, E. coli and total coliform were found to leach down through the soil profiles, and their concentrations decreased with soil depth and time. The statistical analysis of soil samples and leachate showed that the concentration of E. coli in the treatments at the three sampling depths and in the leachate were significantly different from control (P ≤ 0.05), which is attributed to the effectiveness of the treatments in reducing the leaching of fecal coliforms. However, the concentration of total coliforms was significant (P ≤ 0.05) on certain intervals and insignificant in the others; this can be attributed to already present total coliforms in the soil system and effectiveness of the treatments to hinder coliform transport. Soil biochar amendment was thus seen to be effective in reducing the leaching of fecal coliforms through soil profiles and providing fecal coliforms free leachate. iv RÉSUMÉ Ce projet répond aux préoccupations du public canadien au sujet de la qualité de l'eau dans les régions où de nombreuses exploitations agricoles sont présentes. Dans les régions où l’on trouve de nombreuses exploitations d'élevage intensif (EEI), le fumier est épandu sur les champs, et par conséquent les concentrations élevées de coliformes fécaux peuvent se retrouver dans les eaux de surface. Les coliformes fécaux sont endémiques chez les volailles et sont difficiles à éradiquer des sites de production. Le fumier de volaille contient Campylobacter jejuni, Escherichia coli (y compris du O157: H7), et Salmonella spp. Le biochar, un charbon produit par pyrolyse de la biomasse, gagne de plus en plus de reconnaissance à l’échelle mondiale en raison de ses propriétés uniques lorsqu'il est utilisé comme amendement de sol. Le biochar pourrait jouer un rôle potentiellement important dans le contrôle de la mobilité des agents pathogènes dans le sol et l'eau. Sa demi-vie est estimée à des centaines d'années. Par conséquent, son rôle dans la réduction de la pollution agricole pourrait s’étendre sur une longue période, et donc être très rentable. Dans cette étude, nous examinons l'efficacité du biochar dans la prévention de la lixiviation des coliformes fécaux dans l'eau de surface. Les organismes ciblés dans cette étude sont Escherichia coli (E coli.) et les coliformes totaux. E. coli est reconnu comme étant l’organisme indicateur de la présence de coliformes fécaux et les coliformes totaux comme étant révélateur du taux de désinfection. L'étude est composée de deux parties, l’une effectuée en laboratoire et l’autre sur le terrain. Dans l'étude en laboratoire, l'efficacité d’absorption et de désorption d’E. coli de trois différents types de biochar (les variations étant basées sur la température, la durée et les matières premières utilisées dans la production) a été étudiée. Par le moyen de tests d’adsorption, une analyse comparative a été effectuée afin de déterminer la différence entre du biochar pur, un sol amendé par du biochar et un sol non-amendé dans leur efficacité d’élimination d’E. coli. Les analyses statistiques ont montré que le biochar comme amendement du sol joue un rôle important dans l'adsorption d’E. coli. Le sol amendé par du biochar et le sol non-amendé ont ensuite été soumis à un test de désorption afin de tester leur capacité de rétention. Les analyses statistiques ont v démontré que deux types de sol amendés de biochar (l’un issu de la pyrolyse lente et l’autre de la pyrolyse rapide) retenaient E. coli. La capacité d'adsorption du biochar s’est révélée être directement proportionnelle à sa porosité et inversement proportionnelle à sa teneur en cendres. Les deux types de biochars ont été sélectionnés et utilisés comme traitements dans l'étude de terrain. L'étude de terrain a été réalisée sur des lysimètres pendant soixante jours afin d’évaluer l’efficacité du biochar dans l’élimination et la réduction du lessivage des coliformes fécaux (E. coli) venant du fumier de volaille. Le témoin contenait seulement du sol et le biochar sélectionné (l’un issu de la pyrolyse lente et l’autre de la pyrolyse rapide) a été utilisé comme traitement. Le biochar a été mélangé avec 5 cm de sol en partant de la surface (rapport de sol a biochar de 99:1). Le fumier de volaille a été répandu sur le sol dans tous les lysimètres. Les lysimètres ont été protégés de la pluie afin de simuler l'irrigation. L'irrigation a été simulée en 4 événements au cours des soixante jours. Le sol (3 profondeurs d'échantillonnage) et les échantillons de lixiviat ont été prélevés et analysés à des intervalles temporels prédéterminés. Dans cette étude, E. coli et les coliformes totaux se sont infiltrés à travers les profils de sol, et leurs concentrations ont diminués avec le temps et la profondeur du sol. Les analyses statistiques (P ≤ 0.05) des échantillons de sol et des lixiviats ont montré que la concentration d’E. coli dans les traitements aux trois profondeurs et dans le lixiviat étaient différente du contrôle, ce qui est attribué à l'efficacité des traitements de réduction du lessivage des coliformes fécaux. Cependant, la concentration de coliformes totaux était significatif (P ≤ 0.05) sur certains intervalles et insignifiant sur d’autres, ce qui peut être lié a une présence antérieure de coliformes totaux dans le sol et a l'efficacité des traitements qui suggèrent un taux de désinfection efficace. Le sol amendé de biochar a donc été considéré comme étant efficace dans la réduction du lessivage des coliformes fécaux a travers les profils de sol ; et efficace dans l’apport de lixiviat sans coliformes fécaux. vi ACKNOWLEDGEMENTS It was an immense pleasure and pride to work under the supervision of Dr. Shiv O Prasher. His diligence, support and guidance played a vital role in completing my masters’ degree. I thank him for being an excellent supervisor and I should say he is very patient and caring which really helped me concentrate on my research with little pressure which helped me in being more motivated and focussed on my work. I also would like thank him for providing me with funding. He is a role model I would always look up to and it would be a pleasure to work with him in the future. I would like to thank Liliane and David Stewart foundation for their financial support. I also would like to thank Dr Martin Chenier for providing me access to his laboratory and providing guidance. I would like to thank Dr Brian Driscoll and Dr Darwin for their insightful suggestions which were very significant in my completion. I would like to immensely thank Ms Candice Young for guiding me with experimentation and troubleshoot. I also would like to thank Mr Barry Husk, CEO Blueleaf inc. for providing me with support and suggestion. I would like to thank Ms Sedigheh Zarayan for assisting in procurement of materials and being a mother like figure to me with much care. I would like to thank Dr Georges T Dodds for helping me complete my thesis. I would like to thank Mr Azhar baig who helped me troubleshoot and my other colleague for being very understanding and helpful. I also want to thank Ms Ekaterina Yakushina for providing support during my field study. I would like to thank my brother in law Mr Asif Syed and my sister in USA for their support and love. I would like to thank my family and friends back home and around the world for supporting me and making me feel comfortable in a country which was foreign to me. I express my gratitude to Susan Gregus (Administrative Assistant of the Department of Bioresource Engineering) for her administrative and secretarial help. I would also like to thank Ms Jennifer who helped me translate the abstract to French. vii CONTRIBUTION OF AUTHORS The authorship for the two manuscripts making up this thesis is as follows i. S.A. Arief Ismail and S.O. Prasher ii. S.A. Arief Ismail and S.O. Prasher All the authors are from the Department of Bioresource Engineering, McGill University, Montreal. All the fieldwork, analysis of data, and preparation of above manuscripts were completed by the candidate, S.A. Arief Ismail, under the supervision of Dr. Shiv O. Prasher, James McGill Professor, Department of Bioresource Engineering. Dr. Prasher provided the necessary funds, supervisory guidance, and assistance to carry out this research. viii TABLE OF CONTENTS TITLE .............................................................................................................................................. I ABSTRACT .................................................................................................................................. III RÉSUMÉ ....................................................................................................................................... V ACKNOWLEDGEMENTS ......................................................................................................... VII CONTRIBUTION OF AUTHORS............................................................................................ VIII TABLE OF CONTENTS .............................................................................................................. IX LIST OF TABLES ..................................................................................................................... XIII LIST OF FIGURES ..................................................................................................................... XV 1. CHAPTER ONE INTRODUCTION .......................................................................................................................... 1 1.1 THE ISSUE ............................................................................................................................ 1 1.2 TARGET PATHOGENS ........................................................................................................... 2 1.3 PROPOSED REMEDIAL PRACTICE .......................................................................................... 3 1.4 OBJECTIVES ......................................................................................................................... 4 2. CHAPTER TWO LITERATURE REVIEW ............................................................................................................... 6 2.1 BACKGROUND INFORMATION .............................................................................................. 6 2.2 POULTRY MANURE AS FERTILIZER .................................................................................... 10 2.3 MICROBIAL TRANSPORT .................................................................................................... 11 2.3.1 Overview ................................................................................................................... 11 2.3.2 Role of macropores in transport ............................................................................... 12 2.3.3 Role of water content in porous media and porosity in transport ............................ 12 2.3.4 Role of overall size of microbes ................................................................................ 13 2.4 ADSORPTION CAPACITY OF MICROBES IN SOIL MEDIA ...................................................... 15 2.5 INTRODUCTION TO BIOCHAR .............................................................................................. 17 2.5.1 What is biochar ......................................................................................................... 17 2.5.2 History of biochar ..................................................................................................... 17 ix 2.5.3 Production of biochar ............................................................................................... 18 2.6 PROPERTIES OF BIOCHAR ................................................................................................... 20 2.6.1 Structural property.................................................................................................... 20 2.6.2 Physical & chemical properties ................................................................................ 21 2.6.3 Pore size and particle size distribution of biochar ................................................... 23 2.7 APPLICATION OF BIOCHAR ................................................................................................. 24 2.7.1 Mitigation of climate change .................................................................................... 25 2.7.2 Waste management ................................................................................................... 25 2.7.3 Energy production .................................................................................................... 25 2.7.4 Soil amendment ......................................................................................................... 25 2.8 BEHAVIOUR OF BIOCHAR WITH MICROBIAL COMMUNITY ................................................. 26 PREFACE TO CHAPTER 3 ........................................................................................................ 28 3. CHAPTER THREE REMOVAL OF ESCHERICHIA COLI BY SOIL BIOCHAR AMENDMENT.......................... 29 3.1 ABSTRACT ............................................................................................................................ 29 3.2 INTRODUCTION .................................................................................................................. 29 3.3 MATERIALS AND METHODS ............................................................................................... 31 3.3.1 Characterization of biochar and soil ........................................................................ 31 3.3.2 Hydraulic conductivity .............................................................................................. 34 3.3.3 Experimental design.................................................................................................. 34 3.3.4 Batch adsorption/desorption experiment .................................................................. 35 3.3.5 Enumeration of E. coli .............................................................................................. 36 3.3.6 Statistical analysis .................................................................................................... 36 3.4 RESULTS AND DISCUSSION ................................................................................................. 37 3.4.1 Characterization of biochar ...................................................................................... 37 3.4.2 Hydraulic conductivity .............................................................................................. 40 3.4.3 Enumeration of E. coli .............................................................................................. 40 3.5 CONCLUSION ...................................................................................................................... 44 PREFACE TO CHAPTER 4 ........................................................................................................ 45 x

Description:
reservoir of Campylobacter jejuni, Escherichia coli (including O157:H7) and Biochar, the charcoal produced from pyrolysis of biomass, is gaining global In adsorption test, a comparative analysis was carried out to understand the biochar and fast pyrolysis biochar) were used as treatments. In the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.