ebook img

Essentials of Statistical Inference PDF

238 Pages·2005·2.929 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Essentials of Statistical Inference

This page intentionally left blank Essentials of Statistical Inference EssentialsofStatisticalInferenceisamodernandaccessibletreatmentoftheprocedures usedtodrawformalinferencesfromdata.Aimedatadvancedundergraduateandgraduate studentsinmathematicsandrelateddisciplines,aswellasthoseinotherfieldsseekinga concisetreatmentofthekeyideasofstatisticalinference,itpresentstheconceptsandresults underlyingtheBayesian,frequentistandFisherianapproaches,withparticularemphasison the contrasts between them. Contemporary computational ideas are explained, as well as basicmathematicaltheory. Writteninalucidandinformalstyle,thisconcisetextprovidesbothbasicmaterialonthe mainapproachestoinference,aswellasmoreadvancedmaterialonmoderndevelopments in statistical theory, including: contemporary material on Bayesian computation, such as MCMC,higher-orderlikelihoodtheory,predictiveinference,bootstrapmethodsandcon- ditional inference. It contains numerous extended examples of the application of formal inferencetechniquestorealdata,aswellashistoricalcommentaryonthedevelopmentof thesubject.Throughout,thetextconcentratesonconcepts,ratherthanmathematicaldetail, whilemaintainingappropriatelevelsofformality.Eachchapterendswithasetofaccessible problems. BasedtoalargeextentonlecturesgivenattheUniversityofCambridgeoveranumberof years,thematerialhasbeenpolishedbystudentfeedback.Somepriorknowledgeofprob- abilityisassumed,whilesomepreviousknowledgeoftheobjectivesandmainapproaches tostatisticalinferencewouldbehelpfulbutisnotessential. G.A.YoungisProfessorofStatisticsatImperialCollegeLondon. R.L.SmithisMarkL.ReedDistinguishedProfessorofStatisticsatUniversityofNorth Carolina,ChapelHill. CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC MATHEMATICS EditorialBoard R.Gill(DepartmentofMathematics,UtrechtUniversity) B.D.Ripley(DepartmentofStatistics,UniversityofOxford) S.Ross(DepartmentofIndustrialEngineering,UniversityofCalifornia,Berkeley) B.W.Silverman(St.Peter’sCollege,Oxford) M.Stein(DepartmentofStatistics,UniversityofChicago) This series of high-quality upper-division textbooks and expository monographs covers all aspects of stochastic applicable mathematics. The topics range from pure and applied statistics to probability theory, operations research, optimization, and mathematical pro- gramming. The books contain clear presentations of new developments in the field and alsoofthestateoftheartinclassicalmethods.Whileemphasizingrigoroustreatmentof theoreticalmethods,thebooksalsocontainapplicationsanddiscussionsofnewtechniques madepossiblebyadvancesincomputationalpractice. Alreadypublished 1. BootstrapMethodsandTheirApplication,byA.C.DavisonandD.V.Hinkley 2. MarkovChains,byJ.Norris 3. AsymptoticStatistics,byA.W.vanderVaart 4. WaveletMethodsforTimeSeriesAnalysis,byDonaldB.PercivalandAndrewT.Walden 5. BayesianMethods,byThomasLeonardandJohnS.J.Hsu 6. EmpiricalProcessesinM-Estimation,bySaravandeGeer 7. NumericalMethodsofStatistics,byJohnF.Monahan 8. AUser’sGuidetoMeasureTheoreticProbability,byDavidPollard 9. TheEstimationandTrackingofFrequency,byB.G.QuinnandE.J.Hannan 10. DataAnalysisandGraphicsusingR,byJohnMaindonaldandJohnBraun 11. StatisticalModels,byA.C.Davison 12. SemiparametricRegression,byD.Ruppert,M.P.Wand,R.J.Carroll 13. ExercisesinProbability,byLoicChaumontandMarcYor 14. StatisticalAnalysisofStochasticProcessesinTime,byJ.K.Lindsey 15. MeasureTheoryandFiltering,byLakhdarAggounandRobertElliott Essentials of Statistical Inference G. A. Young DepartmentofMathematics,ImperialCollegeLondon R. L. Smith DepartmentofStatisticsandOperationsResearch, UniversityofNorthCarolina,ChapelHill cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge cb2 2ru, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521839716 © Cambridge University Press 2005 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2005 isbn-13 978-0-511-12616-1 eBook (NetLibrary) isbn-10 0-511-12616-6 eBook (NetLibrary) isbn-13 978-0-521-83971-6 hardback isbn-10 0-521-83971-8 hardback isbn-13 978-0-521-54866-3 paperback isbn-10 0-521-54866-7 paperback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guaranteethatanycontentonsuchwebsitesis,orwillremain,accurateorappropriate. Contents Preface page ix 1 Introduction 1 2 Decision theory 4 2.1 Formulatihon 4 2.2 The risk function 5 2.3 Criteria for a good decision rule 7 2.4 Randomiseddecisionrules 11 2.5 Finitedecisionproblems 11 2.6 Findingminimaxrulesingeneral 18 2.7 AdmissibilityofBayesrules 19 2.8 Problems 19 3 Bayesianmethods 22 3.1 Fundamentalelements 22 3.2 ThegeneralformofBayesrules 28 3.3 Back to minimax. . . 32 3.4 Shrinkage and the James–Stein estimator 33 3.5 EmpiricalBayes 38 3.6 Choice of prior distributions 39 3.7 Computationaltechniques 42 3.8 Hierarchicalmodelling 48 3.9 Predictivedistributions 52 3.10 Dataexample:Coal-miningdisasters 55 3.11 Dataexample:Geneexpressiondata 57 3.12 Problems 60 4 Hypothesistesting 65 4.1 Formulationofthehypothesistestingproblem 65 4.2 TheNeyman–PearsonTheorem 68 4.3 Uniformlymostpowerfultests 69 4.4 Bayesfactors 73 4.5 Problems 78 vi Contents 5 Specialmodels 81 5.1 Exponentialfamilies 81 5.2 Transformationfamilies 86 5.3 Problems 88 6 Sufficiencyandcompleteness 90 6.1 Definitionsandelementaryproperties 90 6.2 Completeness 94 6.3 TheLehmann–Scheffe´ Theorem 95 6.4 Estimationwithconvexlossfunctions 95 6.5 Problems 96 7 Two-sidedtestsandconditionalinference 98 7.1 Two-sidedhypothesesandtwo-sidedtests 99 7.2 Conditionalinference,ancillarityandsimilartests 105 7.3 Confidencesets 114 7.4 Problems 117 8 Likelihoodtheory 120 8.1 Definitionsandbasicproperties 120 8.2 TheCrame´r–RaoLowerBound 125 8.3 Convergenceofsequencesofrandomvariables 127 8.4 Asymptoticpropertiesofmaximumlikelihoodestimators 128 8.5 LikelihoodratiotestsandWilks’Theorem 132 8.6 Moreonmultiparameterproblems 134 8.7 Problems 137 9 Higher-ordertheory 140 9.1 Preliminaries 141 9.2 Parameterorthogonality 143 9.3 Pseudo-likelihoods 145 9.4 Parametrisationinvariance 146 9.5 Edgeworthexpansion 148 9.6 Saddlepointexpansion 149 9.7 Laplaceapproximationofintegrals 152 9.8 Thep∗formula 153 9.9 Conditionalinferenceinexponentialfamilies 159 9.10 Bartlettcorrection 160 9.11 Modifiedprofilelikelihood 161 9.12 Bayesianasymptotics 163 9.13 Problems 164 10 Predictiveinference 169 10.1 Exactmethods 169 10.2 Decisiontheoryapproaches 172 10.3 Methodsbasedonpredictivelikelihood 175 10.4 Asymptoticmethods 179 Contents vii 10.5 Bootstrapmethods 183 10.6 Conclusionsandrecommendations 185 10.7 Problems 186 11 Bootstrapmethods 190 11.1 Aninferenceproblem 191 11.2 Theprepivotingperspective 194 11.3 Dataexample:Bioequivalence 201 11.4 Furthernumericalillustrations 203 11.5 Conditionalinferenceandthebootstrap 208 11.6 Problems 214 Bibliography 218 Index 223

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.