ebook img

Essential Statistical Inference: Theory and Methods PDF

566 Pages·2013·5.512 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Essential Statistical Inference: Theory and Methods

Springer Texts in Statistics SeriesEditors: G.Casella S.Fienberg I.Olkin Forfurthervolumes: http://www.springer.com/series/417 Dennis D. Boos • L.A. Stefanski Essential Statistical Inference Theory and Methods 123 DennisD.Boos L.A.Stefanski DepartmentofStatistics DepartmentofStatistics NorthCarolinaStateUniversity NorthCarolinaStateUniversity Raleigh,NorthCarolina Raleigh,NorthCarolina USA USA ISSN1431-875X ISBN978-1-4614-4817-4 ISBN978-1-4614-4818-1(eBook) DOI10.1007/978-1-4614-4818-1 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012949516 ©SpringerScience+BusinessMediaNewYork2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To ouradvisors,Bob Serfling(DDB)andRay CarrollandDavid Ruppert(LAS), who set ourcareers on trackandgenerouslyand expertlyguidedusthroughourearly professionalyears and To ourspouses,Kathy(DDB)andDonna (LAS),whograciouslyandpatientlytolerated usboththen andnow Preface Theoriginsofthisbookdatebacktothe1990swhenweco-taughtasemester-long advancedinferencecourse.Ourgoalthenandnowistogiveanaccessibleversionof classicallikelihoodinferenceplusmoderntopicslikeM-estimation,thejackknife, and the bootstrap. The last chapter on classical permutation and rank methods is not“modern”butcertainlyistimeless.Ourworldviewisthatmodelsareimportant forstatisticalframingofscientific questions,buttheM-estimationandresampling approachesfacilitate robustinferencein the faceof possiblemisspecification.The Bayesian chapter is a newer addition intended to give a solid introduction to an increasingly important general approach. Most of the book, however, is clearly frequentist. A typical semester course consists of Chaps.1–6 plus selections from Chaps. 7–12.WehavesprinkledRcodethroughoutthetextandalsoinproblems. We expect students to have taken a first-year graduate level mathematical statistics course from a text like Statistical Inference by Casella and Berger. But measure theory is not a requirement and only shows up briefly when discussing almost sure convergence in Chap.5 and in the Chap.2 appendix on exponential families. Althoughintendedforsecond-yeargraduatestudents,manyofthechapterscan serve as referencesfor researchers. In particular, Chap.9 on Monte Carlo studies, Chap.10onthejackknife,andChap.12onpermutationmethodscontainresultsand summariesthatarenoteasilyaccessibleelsewhere. We thank many generations of students for careful reading and constructive suggestions. Raleigh,NC,USA DennisD.Boos LeonardA.Stefanski vii Contents PartI IntroductoryMaterial 1 RolesofModelinginStatisticalInference ............................... 3 1.1 Introduction......................................................... 3 1.2 ThePartsofaModel................................................ 4 1.3 TheRolesofaModelinDataAnalysis............................ 7 1.4 AConsultingExample.............................................. 8 1.5 Notation,Definitions,Asymptotics,andSimulations............. 10 1.5.1 FamiliesofDistributions ................................ 10 1.5.2 MomentsandCumulants ............................... 11 1.5.3 QuantilesandPercentiles................................ 12 1.5.4 AsymptoticNormalityandSomeBasic AsymptoticResults...................................... 13 1.5.5 SimulationMethods ..................................... 15 1.6 Example:ASimpleMean/VarianceModel........................ 17 1.6.1 TheAssumedModelandAssociatedEstimators....... 17 1.6.2 Model-BasedComparisonofMOMtoMLE........... 18 1.6.3 ANon-Model-BasedComparisonofMOM toMLE ................................................... 18 1.6.4 CheckingExampleDetails .............................. 19 1.7 Problems ............................................................ 20 PartII Likelihood-BasedMethods 2 LikelihoodConstructionandEstimation ................................ 27 2.1 Introduction......................................................... 27 2.1.1 NotesandNotation ...................................... 29 2.2 LikelihoodConstruction............................................ 30 2.2.1 DiscreteIIDRandomVariables......................... 30 2.2.2 MultinomialLikelihoods................................ 32 2.2.3 ContinuousIIDRandomVariables ..................... 36 ix x Contents 2.2.4 MixturesofDiscreteandContinuousComponents.... 41 2.2.5 ProportionalLikelihoods ............................... 42 2.2.6 TheEmpiricalDistributionFunctionasanMLE....... 45 2.2.7 LikelihoodsfromCensoredData........................ 46 2.3 LikelihoodsforRegressionModels................................ 50 2.3.1 LinearModel............................................. 50 2.3.2 AdditiveErrorsNonlinearModel....................... 53 2.3.3 GeneralizedLinearModel............................... 53 2.3.4 GeneralizedLinearMixedModel(GLMM)............ 55 2.3.5 AcceleratedFailureModel .............................. 56 2.4 MarginalandConditionalLikelihoods............................. 57 2.4.1 Neyman-ScottProblem.................................. 57 2.4.2 MarginalLikelihoods.................................... 58 2.4.3 Neyman-ScottProblem via Explicit ConditionalLikelihood.................................. 59 2.4.4 LogisticRegressionMeasurementErrorModel........ 59 2.4.5 GeneralFormforExponentialFamilies ................ 61 2.4.6 ConditionalLogisticRegression........................ 61 2.5 The Maximum Likelihood Estimator andtheInformationMatrix......................................... 62 2.5.1 ExamplesofInformationMatrixCalculations ......... 69 2.5.2 VarianceCostforAddingParameterstoaModel...... 75 2.5.3 TheInformationMatrixforTransformed andModeledParameters ................................ 79 2.6 MethodsforMaximizingtheLikelihoodorSolving theLikelihoodEquations........................................... 80 2.6.1 AnalyticalMethodsviaProfileLikelihoods............ 81 2.6.2 NewtonMethods......................................... 82 2.6.3 EMAlgorithm ........................................... 83 2.7 AppendixA–UniquenessofMaximumLikelihood Estimators........................................................... 90 2.7.1 Definitions................................................ 90 2.7.2 MainResults ............................................. 91 2.7.3 ApplicationofTheorem2.2totheMultinomial........ 92 2.7.4 UniquenessoftheMLEintheNormal location-scaleModel..................................... 93 2.7.5 Applicationof Theorems2.1 and 2.3 totheExponentialThresholdModel.................... 95 2.7.6 UniquenessoftheMLEforExponentialFamilies..... 96 2.8 AppendixB–ExponentialFamilyDistributions.................. 97 2.8.1 CanonicalRepresentation ............................... 99 2.8.2 MinimalExponentialFamily............................ 101 2.8.3 Completeness ............................................ 103 2.8.4 DistributionsoftheSufficientStatistics ................ 104 Contents xi 2.8.5 Familieswith TruncationorThreshold Parameters ............................................... 105 2.8.6 ExponentialFamilyGlossary ........................... 106 2.9 Problems ............................................................ 107 3 Likelihood-BasedTestsandConfidenceRegions ....................... 125 3.1 SimpleNullHypotheses............................................ 128 3.2 CompositeNullHypotheses........................................ 130 3.2.1 WaldStatistic–Partitioned(cid:2) ........................... 130 3.2.2 ScoreStatistic–Partitioned(cid:2)........................... 131 3.2.3 LikelihoodRatioStatistic–Partitioned(cid:2) .............. 132 3.2.4 NormalLocation-ScaleModel.......................... 132 3.2.5 Wald,Score,andLikelihoodRatioTests– H Wh.(cid:2)/D0 ........................................... 135 0 3.2.6 SummaryofWald,Score,andLRTestStatistics ...... 136 3.2.7 ScoreStatisticforMultinomialData.................... 137 3.2.8 WaldTestLackofInvariance ........................... 139 3.2.9 TestingEqualityofBinomialProbabilities: IndependentSamples.................................... 142 3.2.10 TestStatisticsfortheBehrens-FisherProblem......... 143 3.3 ConfidenceRegions................................................. 144 3.3.1 Confidence Intervalfor a Binomial Probability ............................................... 144 3.3.2 ConfidenceIntervalfortheDifference ofBinomialProbabilities:IndependentSamples....... 145 3.4 LikelihoodTestingforRegressionModels........................ 146 3.4.1 LinearModel............................................. 146 3.4.2 AdditiveErrorsNonlinearModel....................... 146 3.4.3 GeneralizedLinearModel............................... 146 3.5 ModelAdequacy.................................................... 149 3.6 NonstandardHypothesisTestingProblems........................ 150 3.6.1 One-SidedHypothesesandTheirExtensions.......... 151 3.6.2 NullHypothesesontheBoundary oftheParameterSpace .................................. 153 3.7 Problems ............................................................ 158 4 BayesianInference.......................................................... 163 4.1 Introduction......................................................... 163 4.2 BayesEstimators.................................................... 170 4.3 CredibleIntervals................................................... 171 4.4 ConjugatePriors .................................................... 172 4.5 NoninformativePriors.............................................. 174 4.6 NormalDataExamples............................................. 176 4.6.1 OneNormalSamplewithUnknownMean andVariance.............................................. 176 4.6.2 TwoNormalSamples.................................... 178 4.6.3 NormalLinearModel.................................... 179 xii Contents 4.7 HierarchicalBayesandEmpiricalBayes.......................... 182 4.7.1 One-WayNormalRandomEffectsModel.............. 183 4.7.2 James-SteinEstimation.................................. 186 4.7.3 Meta-AnalysisApplicationsofHierarchical andEmpiricalBayes..................................... 187 4.8 MonteCarloEstimationofaPosterior............................. 193 4.8.1 DirectMonteCarloSamplingfromaPosterior........ 194 4.8.2 MarkovchainMonteCarloSamplingfrom aPosterior................................................ 195 4.8.3 WhyDoesGibbsSamplingWork?...................... 199 4.9 Problems ............................................................ 201 PartIII LargeSampleApproximationsinStatistics 5 LargeSampleTheory:TheBasics........................................ 207 5.1 Overview............................................................ 207 5.1.1 StatisticsApproximatedbyAverages................... 208 5.2 TypesofStochasticConvergence.................................. 212 5.2.1 ConvergencewithProbability1(Almost SureConvergence)....................................... 213 5.2.2 ConvergenceinProbability ............................. 214 5.2.3 ConvergenceinDistribution............................. 217 5.3 RelationshipsbetweenTypesofConvergence..................... 223 5.4 ExtensionofConvergenceDefinitionstoVectors................. 223 5.4.1 Convergencewp1andinProbability forRandomVectors...................................... 224 5.4.2 ConvergenceinDistributionforVectors................ 224 5.5 ToolsforProvingLargeSampleResults........................... 226 5.5.1 MarkovInequality ....................................... 226 5.5.2 ContinuousFunctionsofConvergentSequences....... 227 5.5.3 OrderNotation .......................................... 231 5.5.4 AsymptoticNormalityandRelatedResults ............ 235 5.5.5 TheDeltaTheorem...................................... 237 5.5.6 Slutsky’sTheorem ...................................... 241 5.5.7 ApproximationbyAverages............................. 242 5.5.8 FindinghintheApproximationbyAverages.......... 244 5.5.9 ProvingConvergencein Distribution ofRandomVectors....................................... 255 5.5.10 MultivariateApproximationbyAverages .............. 257 5.6 SummaryofMethodsforProvingConvergence inDistribution....................................................... 258 5.7 Appendix–CentralLimitTheoremforIndependent Non-IdenticallyDistributedSummands ........................... 259 5.7.1 DoubleArrays............................................ 261 5.7.2 Lindeberg-FellerCentralLimitTheorem............... 262 5.8 Problems ............................................................ 263 Contents xiii 6 LargeSampleResultsforLikelihood-BasedMethods.................. 275 6.1 Introduction......................................................... 275 b 6.2 ApproachestoProvingConsistencyof(cid:2) ...................... 275 MLE 6.3 ExistenceofaConsistentRootoftheLikelihoodEquations..... 277 6.3.1 Real-Valued(cid:2) ............................................ 278 6.3.2 Vector(cid:2) .................................................. 280 6.4 CompactParameterSpaces......................................... 282 6.5 AsymptoticNormalityofMaximumLikelihoodEstimators ..... 283 6.5.1 Real-Valued(cid:2) ............................................ 284 6.5.2 Vector(cid:2) .................................................. 286 6.6 AsymptoticNullDistributionofLikelihood-BasedTests......... 287 6.6.1 WaldTests................................................ 287 6.6.2 ScoreTests ............................................... 288 6.6.3 LikelihoodRatioTests................................... 288 6.6.4 LocalAsymptoticPower ................................ 290 6.6.5 NonstandardSituations.................................. 291 6.7 Problems ............................................................ 292 PartIV MethodsforMisspecifiedLikelihoodsandPartially SpecifiedModels 7 M-Estimation(EstimatingEquations) ................................... 297 7.1 Introduction......................................................... 297 7.2 TheBasicApproach................................................ 300 7.2.1 EstimatorsforA,B,andV ............................. 301 7.2.2 SampleMeanandVariance.............................. 302 7.2.3 RatioEstimator .......................................... 304 7.2.4 DeltaMethodViaM-Estimation........................ 305 7.2.5 PosteriorMode........................................... 306 7.2.6 InstrumentalVariableEstimation ....................... 306 7.3 ConnectionstotheInfluenceCurve(Approximation byAverages) ........................................................ 309 7.4 Nonsmooth Functions............................................ 311 7.4.1 RobustLocationEstimation............................. 311 7.4.2 QuantileEstimation...................................... 312 7.4.3 PositiveMeanDeviation................................. 313 7.5 RegressionM-Estimators........................................... 314 7.5.1 LinearModelwithRandomX.......................... 314 7.5.2 LinearModelforNonrandomX........................ 315 7.5.3 Nonlinear Model for Nonrandom X—ExtendedDefinitionsofAandB ................. 318 7.5.4 Robustregression........................................ 320 7.5.5 GeneralizedLinearModels.............................. 321 7.5.6 GeneralizedEstimatingEquations(GEE).............. 322 7.6 ApplicationtoaTestingProblem .................................. 323

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.