ebook img

ERIC EJ1064291: Preparation of Speciality-Integrated Assignments in Informatics Study Courses at the Higher Education Level PDF

2012·0.18 MB·English
by  ERIC
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ERIC EJ1064291: Preparation of Speciality-Integrated Assignments in Informatics Study Courses at the Higher Education Level

InformaticsinEducation,2012,Vol.11,No.1,131–149 131 ©2012VilniusUniversity Preparation of Speciality-Integrated Assignments in Informatics Study Courses at the Higher Education Level Ma¯ris V¯ITIN¸Š1,OskarsRASNACˇS2 1UniversityofLatvia 19Rainablvd.,Riga,LV1586,Latvia 2R¯ıgaStradin¸šUniversity 16Dzirciemastr.,Riga,LV1007,Latvia e-mail:[email protected],[email protected] Received:September2011 Abstract.Informationandcommunicationstechnologiestodayareusedinvirtuallyanyuniversity course when students prepare their papers. ICT is also needed after people are graduated from universityandenterthejobmarket.Thisauthorisaninstructorinthefieldofinformaticsrelated to health care and social sciences at the R¯ıga Stradin¸š University. In practice, he has found that aftercompletinginformaticscourses(IC)attheuniversitylevel,studentsandpracticingspecialists atvariouslevelsfindithardtodecideonwhatdataprocessingmethodtouseinordertointerpret extractedresultsintherelevantareaofspecialisation.Therearevariousdataprocessingmethods in the literature, presented individually and without adequate linkages. The author has found in practice that when such assignments are handled, there is closer linkage among data processing methodsthantheliteraturewouldsuggest. Inthisarticle,theauthorsdealwiththefollowingissues: (1) howassignmentsgivenduringinformaticscoursesattheuniversitylevelcanbeintegrated withtherelevantareaofspecialisationbymakinguseofprofessionalstandards,guidebooks to studies in other courses, descriptions and scholarly publications so as to help students andpracticingspecialiststotakedecisionsondataprocessingmethods,theiruse,andthe interpretationoftheirresults; (2) howtoensurethateducationaldatarelatedtotheareaofspecialisationareobtainedonthe basisofstatisticsinscholarlypublications; (3) whatkindofcontentistobeusedforstudentsofhealthcareandthesocialsciences; (4) howtochoosemethodstoresolvedataprocessingissues; (5) what are the recommended principles for evaluating the knowledge, skills and talents of students? Theviewsthatarepresentedinthispaperarethoseoftheauthorsorofotherauthors. Keywords:tests,informatics,integration. 1. Introduction ResearchconductedbytheauthorattheR¯ıgaStradin¸šUniversityshowsthatmanystu- dentsandpracticingspecialistsrequireconsultationsinrelationtotheselection,useand 132 M.Vi¯tin¸š,O.Rasnacˇs interpretation of data processing methods when writing research papers. In providing suchconsultations,theauthorhasencounteredthefollowingproblems: • alackofknowledgeandunderstandingaboutconceptsanddataprocessingmeth- ods; • aninabilitytodefinelinkagesamongconceptsanddataprocessingmethods; • aninabilitytoreadtheflowchartsofalgorithms; • difficultyinunderstandingtheinformationandcommunicationstechnology(ICT) and statistical concepts which are in algorithms, as well as the relevant data pro- cessingmethodsandtheirrelationshiptotheconcepts; • difficultyinselectingoneofthenormaldistributioncriteriathatareavailable; • diverse understandings of qualitative and quantitative data and measuring scales; inpsychologyandarttherapy,forinstance,roundscaledata(differentassessments inscores)areseenasquantitativedata(Martinsoneetal.,2009). Thefollowingthingshavebeendoneintheworldtodealwiththeseproblems: • the contentof informationcourses is designedand implementedat any uni- versitywherehealthcareandsocialsciencecoursesareoffered; • thereareECDLrequirementsrelatedtotheuseofICTineverydaylifeandin variousprocessions; • there are textbooks on the use of statistics in health care and the social sci- ences,completewithrelevantexamples; • therearevariousalgorithmsintheformofflowchartsandsummarisingtables (Table1)inlinewiththestatisticalmethodthathasbeenchosen(Teibe,2001, 2007). Table1 Classificationofdataprocessingassignmentsandtheselectionofsolutionsonthebasisofthedistribution Tasks Quantitativenormal Non-parametrics(allothercases) distributeddata Descriptivestatistics Mean,std.deviation Median,mode,inter-quartilerange Twoindependentgroup Independentsamplet-test Mann–Whitney,Kolmogorov–Smirnov, comparisonbyonevariable Wald–Wolfowitz,chi-squareandFisher exactcriterion Twodependentgroupcomparison Pairedsample,samplettest Wilcoxon,signandMcNemarcriterion byonevariable Threeandmoreindependentgroup ANOVA Kruskal–Wallis,medianandchi-square comparisonbyonevariable criterions Three and more dependent group FridmanANOVA FridmanANOVA,Cochrancriterion comparisonbyonevariable Twovariablerelationshipanalysis Pearsoncorrelationanalysis Chi-squarecriterion,Spearman,Kendall andgammacorrelationanalysis Three and more variable coinci- Regression,discriminate, Logisticregressionanalysis dentanalysis factorandclusteranalysis PreparationofSpeciality-IntegratedAssignmentsinInformaticsStudyCourses 133 Theauthorsbelievethatthefollowingfactorscreateproblemshere: • There has been no identificationof the minimal knowledgeskills and talents that areneededtowriteresearchpapersatvariousstudylevels; • professionalstandards,studyguidelinesandstatisticsfromscholarlyliteratureare notusedtoasufficientextent; • testingassignmentsarenotinlinewiththedecisionsthatarenecessarytowritea researchpaper; • theTable1andtheflowchartsofalgorithmsdonotstatewhichofthemanynormal distributioncriteriashouldbeused. Normal distribution criteria, to a certain extent, can be divided into qualitative cri- teria (the Lyapunov theory, construction of a histogram) and quantitative criteria (the Kolmogorov–Smirnovtest).Thequalitativecriteriamakeitpossibletoassumethatany quantitative data are distributed normally. In that case, it turns out that more than one methodcanbeusedtoaddressoneandthesamesituation.Thesameisnotindicatedin theflowcharts(Teibe,2001,2007). Itisofimportancetogreatinterestamongstudentsatvariouslevelsandtoconvince themthatICTskillswillbeofusetothemintheirareaofspecialisation,offeringappro- priateexamplesinthisprocess.Itisforthispurposethatthereareteachingresourcesand scholarlyarticleswhichaddresssuchexamples–newandevernewones,moreover.Itis importanttomakeskilfuluseofdatafromsuchpublicationsintheteachingprocess. 2. TheConceptofIntegration Inadictionaryofpedagogicterminology,wereadthatintegrationisaprocessinwhich individualelements,sub-systemsandsectionsarebroughttogetherintoasinglesystemic whole (a system). In the process of education, this relates to subject matter, resolution ofproblems,learningandresearch,bringingalloftheseintoasinglewholeintermsof theknowledgeandskillsthataretobelearnedandachievedduringaspecificcourseof study.Thiscanbedonethroughspecificallyintegratedstudycourses,orviaanintegrated reviewofthecomponentsofasingletopicofstudy(Skujin¸a,2000). For informatics courses at the higher education level, there are two important types ofintegration,asdescribedbytheAmericanpedagogyspecialistRobinFogarty;citedin Andersone(2007): • thefragmentarytypeof integration,in whichstudentstake individualandclearly separatestudycourseswhichareinternallyintegratedintermsofcontent,butare notlinkedamongthemselves; • the linked type of integration, in which subject matter in the various courses of studyislinkedsothataunifiedunderstandemergesvis-a-visthefundamentalcon- ceptsintheprocess. Theauthorsbelievethatthelinkedtypeofintegrationisbetterforstudents. Theutilityofintegrationhasbeenstudiedbynumerousscholars.Lipsonhasdescribed thepositiveeffectsofintegration;citedinAndersone(2007): 134 M.Vi¯tin¸š,O.Rasnacˇs • anintegratedprogrammehelpsstudentstodeveloptheirskills; • anintegratedsetofbasicknowledgeallowsstudentstolearninformationquickly; • diverseperspectivesleadtoabroaderbaseofintegratedknowledge; • anintegratedprogrammeencouragesmorein-depthandmoreexpansivelearning; • an integrated programme encourages positive attitudes among students vis-a-vis theirlearning; • anintegratedprogrammeallowstimeforresearch. Theauthorsbelievethattheseclaimscanbereformulatedspecificallyforuniversity- levelinformaticscourses: • studentscanproducehigh-qualityresearchpapers; • ICTstudiescanbeputtoprofessionaluseandpractice; • studentscanlearninaccordancewiththelatesttrendsanddevelopmentsinthefield ofcomputerscience. The author’s experience is that if an assignment is formulated and techniques for solving the problem are based on several single-use or multi-muse modules, then it is possibletolearntheinformationmorequicklythanisthecasewithteachingabouteach usageinturn. The fact is that the writing of research papers for virtually any course of study at the university level will involve the use of IT. For that reason, the authors feel that the bestoptionistoensurethatwithininformaticscourses,theoreticalknowledgefromthe field of ICT and other areas is brought together into a single whole – something that is discussedinprofessionalstandards,studyguidebooksandscholarlypublications. 3. DocumentsRelatedtotheInformationwhichSpecialistsNeed In any sector, the information which specialists must receive is identified in documents such as study guidebooks (e.g., the study guidebook of the R¯ıga Stradin¸š University, 2011), course descriptions (The University of Latvia Information System Course Reg- ister,2011),professionalstandards (The Registerof ProfessionalStandards,2011),and scholarlypublicationsinthesector(scholarlypapersfromtheR¯ıgaStradin¸šUniversity, 2008;thesesfromtheR¯ıgaStradin¸šUniversity,2009;thesesfromtheR¯ıgaStradin¸šUni- versity,2010;thesesfromtheR¯ıgaStradin¸šUniversity,2001).Itwasonthebasisofthis fact that the authors defined a new criterion for the integration of computer studies and studies in other areas of specialisation: Integration between computer studies and other studies occurs if issues related to the informatics course is linked to study guidebooks, coursedescriptions,professionalstandardsandscholarlypublicationsintherelevantsec- tors. Professional standards, study guidebooks and course descriptions usually go into greaterorlesserdetailastosubjectmatterwhichstudentsmustlearn.Scholarlypublica- tionsspeaktosubjectsrelatedtoprofessionalstandardsandothersourcesofinformation in relation to specific topics in each sector, as well as innovations in the publications themselves(Fig.1).Thecontentofcourses,asdescribedincoursedescriptionsandstudy PreparationofSpeciality-IntegratedAssignmentsinInformaticsStudyCourses 135 Fig. 1. The relationship among professional standards, study guidebooks, and scholarly publications in the sector. guidebooks,isinturnbasedonprofessionalstandards,othersourcesofinformationabout topicsintherelevantareaofspecialisation,andinnovationspresentedbytheauthorsof scholarlypublications. Specialistsinoneareausuallyneedtostudyissuesrelatedtomanyothersectors,par- ticularlythosewhichareclosesttothesubjectmatterathand.Publichealthspecialists, forinstance,mustlearnagreatdealaboutmedicineandotheraspectsofthehealthcare system.Thisrepresentsaverycomplicatedstructureintermsoflinkagesamongthevari- oussectors,andthisisverydifficulttodepictonagrid.Ifwelookatthestudyguidebooks andprofessionalstandardsoftheRSUandotherinstitutionsofhigherlearning,however, we see that in all cases, students pursuing careers in health care or the social sciences mustdealwithissuesthatvarioussectorshaveincommon. Specialisations related to health care and the social sciences represent an integra- tionofcomputerscience,mathematics,statistics,business,pedagogy,legislation,contact psychology,etc.Theauthorshavepreparedagridtodepictthewayinwhichcomputer studiesareintegratedintoothersectors(Fig.2). Allsectorsareintegratedwithcomputerstudiesandbusiness.Thelabourmarketand industry–thosearebusinessissueswhichare,therefore,linkedtoanyothersector.Each company needs sector-specific bookkeeping and financial services, and it may well en- counterissuesrelatedtoplanningofmanufacturing,lendingobligations,savings,supply anddemand,profits,costsandexpenditureofresources(Frolova,1999;VedI¸a,2000). Itisalsotruethatpeopleinvirtuallyanysectoroftheeconomymustworkwithclients. Thisrequirescontactpsychologyskills(InteractiveEncyclopaediaofPsychology,2011). Allsectorsareintegratedwithcomputerscienceandpedagogy.Eachsectorneedsthe trainingofnewspecialistsandtheenhancementofthequalificationsofexistingones. 136 M.Vi¯tin¸š,O.Rasnacˇs Fig.2.Integrationofcomputersciencewithothersectors. Allsectorsareintegratedwithcomputerscienceandrelevantlegislation.Thisistrue intworespects.Firstofall,thereareseverallawswhichrelatebothtocomputerscience and other sectors – the law on statistics (2009), the law to protect the personal data of individuals (2010), and the law on information transparency (2010). It is also true that lawsandlegalnormsarepublishedonmanyInternethomepages.Eachsectorhasitsown specificlawsandlegalnorms.Inthehealthcareindustry,thesearethelawonmedicine (2011),thelawonpatientrights(2009),etc. Figure 2 allows us to conclude that the best way to offer informatics courses at the higher education level is to find examples for the sector itself. Also to be supported, however, are examples from the fields such as contact psychology, sectoral legislation, andotherrelatedsectors(asindicatedinprofessionalstandardsandstudyguidebooks). In practice, this is how the author has found that linked information is transformed: x → f(x) or x → f(x) → g(x), where x relates to information related to the area of specialisationthatisenteredintothecomputer,f(x)relatestoinformationtransformed byanymethodthatislinkedtotheareaofspecialisation,andg(x)relatestotheinterpre- tationoftheinformationthathasbeentransformedbythesoftware. Inordertoprepareassignmentsforstudentswhichhavetodowithtextprocessingand presentations,itisnecessarytotellstudentsabouttherelevantsetofwordsandconcepts PreparationofSpeciality-IntegratedAssignmentsinInformaticsStudyCourses 137 intheareaofspecialisation,asbasedoprofessionalstandards,studyguidebooks,course descriptions and scholarly publications. An example would be the need to determine blood cholesterol levels in a course related to health care. Students must learn how to findinformationontheInternetandtotransformitviatextprocessingorpresentations. 3.1. TheFirstStageoftheResearch Before and during the research, the authors looked for new applications of ICT in the areasofhealthcareandthesocialsciences,andseveralscholarlypublicationswerepro- ducedduringthistime.Theseresultscanbeusedforinformaticscoursesattheuniversity level(Gru¯tupaetal.,2009;Zakrizevskaetal.,2009). Inordertoaddressthisissue,theauthorsdidthefollowingthingsduringthesecond semesterofthe2009/2010academicyear: • adjustedthecontentoflearning; • adjustedthealgorithmforselectingdataprocessingmethods(Table1); • expandedtherangeofeducationaldataasgeneratedfromscholarlypublications; • taughtsetsofconceptsinEnglishrelatedtotechniquesthatcanbebroughttobear whendealingwithassignmentsatauniversity-levelinformaticscourse(e.g.,Inde- pendentSamplet-test). Inconsultationwithcolleaguesfromotheruniversities,wepreparededucationalcon- tentatthreelevels–minimal,in-depthandoptimal. Theminimallevelspeakstotheknowledge,skillsandtalentsthatareneededtowrite researchpapersatthecollegelevel.Sometimesthisisenoughtowriteabachelor’sthesis, butinmostcasesthatisnottrue. • informationandcommunications,basictextprocessing; • typesofsurveysandextractionofdata; • basicdataprocessingviatheuseofelectronictablesorstatisticalsoftware; • entryandinterpretationofresultsintextprocessingsoftware; • finaltextprocessingwithin-depthECDLquestions; • presentation. Theoptimallevelspeakstotheknowledge,skillsandtalentsthatareneededtowrite abachelor’sormaster’sthesis: • workingwiththenamesandpersonalcodesofindividuals; • sampleandpopulation(generalpopulation); • elementsofthetheoryofprobability; • allareasofspecialisationinwhichmeasuringinstrumentsareimportant–process- ingoftheresultsofmeasurements; • normaldistributionsandcriteriatoinspectthem; • in-depthdescriptivestatistics; • comparingonecohorttothepopulation; • comparingtwoindependentgroupsonthebasisofonevariable; • comparingtwodependentgroupsonthebasisofonevariable; • comparingthreeormoreindependentgroups; 138 M.Vi¯tin¸š,O.Rasnacˇs • comparingthreeormoredependentgroupsonthebasisofonevariable; • simultaneousanalysisofthreeormorevariables. Thein-depthlevelreferstoadditionalknowledge,skillsandtalentsapartfromthose listedabove.Theauthorbelievesthatthefollowingthingscanbelearnedinallareasof healthcareandthesocialsciences: • mergesofmail; • macro-commands; • programminglanguages; • databasesoftware; • imageprocessingsoftware; • economicissuesaddressedwiththehelpofICT; • bookkeepingsoftware; • MathCad(orsoftwaresuchasQuickMath); • mathematicmodelling. OtherICT-relatedissueswhichareofimportanceintherelevantareaofspecialisation: • intheareaofmedicineandpublichealth,thereistheissueofanalysingdynamics (time)andlifeexpectancy; • intheareaoforthoticsandprosthetics,thereareCADsystemswhichareusefulfor drawing(TurboCad,AutoCad); • in the areas of art therapy and psychology, there is application software that is usefulforrecordingsessions,aswellassoundandvideoeditingsoftware; • forvariousmedicalspecialists,thereisworkinvolvingdigitalmedicalequipment; • thereareGISsystemsforemergencyresponsestaff; • thereisbionicmodellingsoftwareforspecialistsinmedicalphysics; • thereareotheroptions,aswell. The author believes that successful integration in the educational process should be basedondatatablesthatarebasedontheactualworkofspecialists.Theproblemisthat Latvia’slawonstatistics(2009)statesthatstatisticalinformationmaynotbepublished orotherwisedisclosedinawaywhichdirectlyorindirectlymakesitpossibletoidentify anindividualoralegalentity.Anexamplerelatestodatainthehealthcaresectorwhich relatestoaspecificpatientorclient.Themoredatacolumnsorelements,thegreaterthe possibilitythatapatientcouldbeidentifiedindirectlyevenifthepatient’sname,surname, personal code and address are not indicated. There is also the problem that the law on protectingthedataofindividuals(2010)statesthatdatacannotbedisclosedwithoutthe permission of patients/clients. How to resolve this issue so that students can work with datawhichareclosetothetruedataoftheareaofspecialisation? TheauthorswouldproposethegenerationofdataintheMSExcelenvironmentonthe basisofstatisticalindicatorsshowninscholarlypublications.Theauthorshaveconducted research to show that publications written by health care and social sciences specialists mostlyofferthefollowingstatisticalindicators–meanandstandarddeviation(theconfi- denceinterval)ortherelativefrequency(%). Inordertocomeupwithassignmentswhichareintegratedwiththeareaofspeciali- sationintheareaofdataprocessing,thefollowingprocessesarenecessary: PreparationofSpeciality-IntegratedAssignmentsinInformaticsStudyCourses 139 • findtherelevantset ofwords inscholarlypublicationsabouttheareaof speciali- sationandtherelevantstatisticalindicators–theaveragearithmeticandstandard deviationorrelativefrequencies(%); • findthenecessarytypeofassignment; • adjusttherelevantstatisticalindicatorsinaccordancewiththetypeofassignment; • generatetherelevantdataviaMSExcelorgeneratorsofrandomnumbersfromthe Internet. Eachsolutionisinlinewithacharacteristicsetofwords.Inpractice,theauthorshave foundthatitisimportantforstudentstolearntherelevantwordsetsinEnglish(Table2) irrespective of the language of the education process. Then the necessary information mustbefoundontheInternetorintheliteratureinacomparativelybriefperiodoftime. Theauthorsadjustedthealgorithmusedinselectingdataprocessingmethods.Onthe basisoftherecommendationsshowninTable1,theauthorshaveofferedtheschemethat isinTable2–onewhichrelatestodifferentnormaldistributioncriteriaandrecommen- dationsfromspecialists,withthefollowingcomments: • students can add data from the round scale to quantitative and qualitative data as theyseefit; • studentscanuseanynormaldistributioncriterionthattheywishtouse. Table1didnotmentionthesituations“Onesamplecomparisonwiththepopulation,” “Graphs,”andseveralimportantdescriptivestatisticalindicators.Forthatreason,theau- thors have supplemented Table 2 with new elements. The research papers of students wereevaluatedonthebasisofthisscheme. Theauthorsproposedthefollowingcriteriatoevaluatetheeffectivenessofthework thatwasdone: • theaveragetestresultsofstudents–selectionofsolutiontechniquesinaccordance withthealgorithm(Prokofjeva,2007;Jevsjukova,2009); • anevaluationoftheextenttowhichtestsgiventobachelor’sdegreestudents,spe- cialists with a higher education and faculty members are in line with the area of specialisation; • anevaluationofthedifficultyoftestsgiventospecialistswithahighereducation andtofacultymembers; • an evaluation of the extent to which courses taken by bachelor’s degree students, specialistswithahighereducation,andfacultymembersareinlinewiththearea ofspecialisation. Theauthorsaskedexpertsaboutthelevelofdifficultyofthesekindsoftests(onafive- pointscale,with1beingtheeasiesttestand5beingthemostdifficultone).Wealsoasked themabouttheextenttowhichthetestswereappropriateforuniversity-levelinformatics coursesandtherelevantareaofspecialisation(againafive-pointscale,with1beingthe leastappropriateand5beingthemostappropriate). The experts were divided into three groups – bachelor’s degree students, specialists withacompletedhighereducation,andfacultymembers.Wetookintoaccounttheareas ofspecialisationinwhichfacultymembersteachinformaticscourses.Oneinstructorcan teach informatics courses in several areas of specialisation, and the evaluation of tests 140 M.Vi¯tin¸š,O.Rasnacˇs Table2 Wordsetscharacteristicofthesolutiontechniquesproposedbytheauthors Typeoftask Quantitativedata Qualitativedata Descriptivestatistics Mean, median, mode, quartiles, per- Median,mode,quartiles,percentiles, centiles, minimum, maximum, range, minimum, maximum, range, inter- variance, std. deviation, inter-quartile quartile range; frequencies, relative range, std. error of skewness, std. er- frequenciesforseparatevalues rorofkurtosis;frequencies,relativefre- quencies,dividingintoclasses Graphs Histogramfrequencypolygon,distribu- Columnbar,piecharts tionline One sample comparison Confidenceintervalsofmeans,onesam- Proportionconfidenceintervals,chi- withpopulation pleStudentt-test,chi-squaretest squaretest Two independent group Independent sample Student t-test, Mann–Whitney, Kolmogorov–Smir- comparisonbyonevari- Mann–Whitney, Kolmogorov–Smirnov nov,chi-squaretests able tests Two dependent group PairedsampleStudentt-test,Wilcoxon, Wilcoxon,sign,McNemartests comparisonbyonevari- signtests able Threeandmoreindepen- Analysis of variance (ANOVA), Wilcoxon,sign,McNemartests dent group comparison Kruskal–Wallis,mediantests byonevariable Three and more depen- Friedman,Kendalltests Kruskal–Wallis, median, chi-square dent group comparison tests byonevariable Two variable relation- Pearson, Spearman, Kendall, gamma Spearman, Kendall, gamma correla- shipanalysis correlationanalysis,regressionanalysis tionanalysis,chi-squaretests Threeandmorevariable Multiple linear regression analysis, k- Cronbachalfaanalysis coincidentanalysis meanclusteranalysis giveninthevariousareasofspecialisationcanbedifferent.Wesurveyed234bachelor’s degreestudents(withrespecttoalltypesoftestsandindependentprojects),26specialists withahighereducation(includingresidents,master’sdegreestudentsanddoctordegree studentsinareasofhealthcarespecialisation),and37instructorsfromtheareasofspe- cialisationinwhichtheyteachclasses.Someoftheintervieweesdidnothaveanopinion aboutsomeofthequestionsthatwereposedtothem. Inordertoevaluatetheresultsoftheworkthatwasdonebythestudents,theauthors came up with a test with questions to which several correct answers were possible. For instance, which method do you recommend for comparing blood cholesterol levels by gender? • theindependentsampleStudentt-test; • theMann–Whitneytest; • theKomogorov–Smirnovtests; • ANOVA;

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.