ebook img

ERIC ED472095: Manipulating Combinatorial Structures. PDF

20 Pages·2000·0.49 MB·English
by  ERIC
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ERIC ED472095: Manipulating Combinatorial Structures.

DOCUMENT RESUME ED 472 095 SE 066 382 Labelle, Gilbert AUTHOR Manipulating Combinatorial Structures. TITLE 2000-00-00 PUB DATE 18p.; In: Canadian Mathematics Education Study Group = Groupe NOTE Canadien d'Etude en Didactique des Mathematiques. Proceedings of the Annual Meeting (24th, Montreal, Quebec, Canada, May 26-30, 2000); see SE 066 379. Non-Classroom (055) -- Speeches/Meeting Papers (150) Guides PUB TYPE EDRS Price MF01/PC01 Plus Postage. EDRS PRICE Curriculum Development; Higher Education; Interdisciplinary DESCRIPTORS Approach; Mathematical Applications; *Mathematical Formulas; Mathematical Models; *Mathematics Instruction; Modern Mathematics; Teaching Methods Combinatorics IDENTIFIERS ABSTRACT This set of transparencies shows how the manipulation of combinatorial structures in the context of modern combinatorics can easily lead to interesting teaching and learning activities at every level of education from elementary school to university. The transparencies describe: (1) the importance and relations of combinatorics to science and social (2) how analytic/algebraic combinatorics is similar to activities; (3) basic combinatorial structures with analytic/algebraic geometry; (5) power series associated with any terminology; (4) species of structures; (6) similarity of operations between power series and species of structures; (7) examples illustrating where the the corresponding species of structures; structures are manipulated; and (8) general teaching/learning activities. (KHR) Reproductions supplied by EDRS are the best that can be made from the original document. PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS O BEEN GRANTED BY Manipulating Combinatorial Structures Gilbert Labelle THE EDUCATIONAL RESOURCES TO THE Universite du Quebec a Montreal (UQAM) INFORMATION CENTER (ERIC) 1 A combinatorial structure is a finite construction made on a finite set of elements. In real-life situations, combinatorial structures often arise as "skeletons" or "schematic descriptions" U.S. DEPARTMENT OF EDUCATION Office of Educational Research and Improvement of concrete objects. For example, on a road map, the elements can be cities and the finite EDUCATIONAL RESOURCES INFORMATION construction can be the various roads joining these cities. Similarly, a diamond can be con- CENTER (ERIC) This document has been reproduced as sidered as a combinatorial structure: the plane facets of the diamond are connected together received from the person or organization originating it. according to certain rules. Minor changes have been made to Combinatorics can be defined as the mathematical analysis, classification and enu- improve reproduction quality. meration of combinatorial structures. The main purpose of my presentation is to show how Points of view or opinions stated in this the manipulation of combinatorial structures, in the context of modern combinatorics, can document do not necessarily represent official OERI position cr policy. easily lead to interesting teaching/learning activities at every level of education: from el- ementary school to university. The following pages of these proceedings contain a grayscale version of my (color) transparencies (two transparencies on each page). I decided to publish directly my trans- parencies (instead of a standard typed text) for two main reasons: my talk contained a great amount of figures, which had to be reproduced anyway, and the short sentences in the transparencies are easy to read and put emphasis on the main points I wanted to stress. The first two transparencies are preliminary ones and schematically describe: a) the importance and relations of combinatorics with science/ social activities, b) how analytic/ algebraic combinatorics is similar to analytic/ algebraic geometry. The next 7 transparencies (numbered 1 to 7) contain drawings showing basic combinatorial structures together with some terminology. Collecting together similar combinatorial structures give rise to the con- cept of species of structures (transparencies 8 to 12). A power series is then associated to any species of structures enabling one to count its structures (transparencies 13 to 15). Each op- eration on power series (sum, product, substitution, derivation) is reflected by similar opera- tions on the corresponding species of structures (transparencies 16 to 18). The power of this correspondence is illustrated on explicit examples (transparencies 18 to 26) where the struc- tures are manipulated (and counted) using various combinatorial operations. Transparen- cies 27 to 30 suggest some general teaching/ learning activities (from elementary to advanced levels) that may arise from these ideas. I hope that the readers will agree that manipulating combinatorial structures constitutes a good activity to develop the mathematical mind. References The main references for the theory of combinatorial species are: Joyal, A. (1981). Une theorie combinatoire des series formelles, Advances in Mathematics, 42, 1-82. Bergeron, F., Labelle, G., & Leroux, P. (1998). Combinatorial Species and Tree-like Structures. Encyclopedia of Math. and its Applications, Vol. 67, Cambridge University Press. AVAILABLE BEST COPY 3 2 S C l 0 2 a ) l y I a x 9 c ( R = s Y 3 x c 2 * i s O a t e = R i 7 " a + a t e l a T 2 1 + T u m l u = x m A y E m = y m e = N M y e e + r Y h I o r 2 h y O B t o - x f a t E M f a x M G 2 M O C C I C A > - I R A - 4 - B - 4 R - E - B G E L G A l L a / A s l i a r C e o / 0 c I 0 r s t C T i a u r e Y I t n t T e r L c i u Y m b A u g L m N o r i A f t e A o s N G C A : . , ) l d s . s s c s a h n e t , n e , y e a t l s ) i ) u a o r c c c . m , t d c n i p s n e s t t t e e e o l a o o m o a a t l e i c i s t o t r , . t o a s a s i g p s e m c n . e z e e e i s e e y t f u g ) r t i e o d r r t r n I c o f m n c u e c i u o o , . a t h v s n i d a t s e t c e m c g n c n s i e n s e c r u t b r u i c , e a i s o c s s o r , e f e t i g i r e t i i s m o t t c e r v s t d c e e g n s . t t c i g e i s n e h n s n , m l c l t i c a s n a m a a c m ) d y g e e t e i w n c i i m a i t t e o s c i g , n p r m h a m t l o s p i a o f F e h r y s t y d u c , t i a a m i t e t y t A r s a r e l , e . c f e m o r o u s s n y f s o N o n e a m o l , g c p t r a b n c . n s i s D o c d l n l s n y u b l a n ) t a o n e s p e n f S o c o o m c u c a o o f i y g i a h a s f t t o i i r e f m o t i e a t e h g , r d t o i E o s g a p a m s g n t o s k s c m c s h n s c . c i , n n e i t n i s s s I m e s i f i c i i o l e y i s u c d a f f y r i g r R t h h y o r i u s i i a u e y l i t s s l o p i l c p b s h a i n s h s a l c m M s s g c o t a i m a a A a u H n a a e n e a a B c n P n e r p b a o C u l d a n s o C l l c g e a t N c c ( ( e s q ( c e ( ( ( i i r n I t u M e n d o r I L c c e E s s s c R c i a d i i m P t e a / r a s m c l n a c n y i e i i r r d o h o y t l t t e t a a a a h n m n e T i i r b b g m m l l o i o w C c 2 3 9 3 e e + l c l c y t y r c , c , x ) , ) d . . d f e . e t f , n t c . f n e % b e i r i k o : r I s 1 o 4 ( . I t ( . n n 7 n o d a e i d v o . r r 1 o e a t V e ) n 0 l f c o o y ( a e c L n ) e 3 _ n d o o r e i t 1 t t a e t d . r n - o s e e L l b o t i c o c . u r 0 a i o k o b s I ' r 3 r n P A 4 o , 1 A ( A S 7 e A 6 . . . 4 4 2 3 . ; e . e e . . l 4 l l p p p ( m m m a a a x x x E E E 1 s S ) e E + r R u . U U t c T u t C s e r f U t s U , a s f o R i e s M e t T c t t i , e i h c e A S n , s t s , s Q i b ( f L U e , , g h a A a e h - n t I r n i R M t u i w = y t U o O y I t i l C c k r b d J e T 6 a e u \ n : 1 " L d t e A d d r o y a n p t / N n e s m e o p ) I l u l t l B l a i e l e u e n i b M e " u b a , q l e o e s h L b O a e r i a c t t t ( t l C r c i e s s r A s s b u o I i G l R i i i t r U U G a s s N t s n I : : : : . n T i 1 b t o A a e m c L h l r r r p U o o o o t e m J C P y t a i I a n N x n s i E A I f e M W 4 ( 2 f O P , 4 S 4 4 3 . H 3 a e . . 1 3 . S S . e . ' r 1 , , a e 2 ? 6 - v ' , y ' 0 - S N r . N e 1 . - 3 n . , r . - 7 , . o 5 . 2 V " . ( 4 3 3 6 3 n . 6 , , . N * " . 4 o 0 - : i . i 9 s . , t . r s 3 . c n 7 . . t . . 1 , n . . o 2 . v . } u . , 4 r . 2 6 0 n a f a / f o . , . o . I * d , \ 7 i , t 0 n i f t 1 e I 4 . r . , 2 V a = o n c . p i o , I A R g S ' A y 3 v t , i . t t 9 I . 4 j i 8 , f 4 " , F : e . 3 / 2 e 4 l a p - 1 - v l 1 e . p i m 7 g 1 m 1 r a e 4 a x 3 2 x E V E 1 3 3 a ; 0 4 t % . 4 e t ; e : l ' s s A ) s - t n n d d r 1 e = - a n d v 1 i r U o \ o e J = a V d U t J e - ` b . r J T " i n 4 u . a n o t A , o c 6 / / r a u 0 n e 0 A r ; o 0 d t 3 s i . r e t / 0 . o s a 4 2 f ; 4 t i . e N x t r I . r l u , . e 1 e s a . > m / - , . N e . i - = ) 1 t i - k r n e - - - g 1 U Y e - I e i i h . \ . l L p . ' t A s ( A A . 7 t T t * / I . . e 6 . . , 6 . l 5 p . , e m . e . l , p f l a p s m y x m a E a x x E E 6 6 ) 1 . 1 = ) . * + U A ( 7 s * n , . 7 . . . 4 o 4 r T . l ( , . A e A - f f * i i r 1 u U e , I = t C r = c u n U u t o c T U r n t u e s o r n E r t u t o n s e t o c s t n h e , u i t e o y C a u s r t t t l s e p o y : 4 T l m t v n g p n o n m e E I t . i e a s n e n l g A A A o , n n C i n . s 3 r s . . 5 o 1 4 T i 1 n 1 e e E r e e s l e p l l i p r p h m e m m h T r a e a ( a x x h x E E E T ( 5 g 9 , 9 N q 2 3 2 1 - = p - f S i - U Z . . , . . n i 1 3 n . e o V f o t . A n , h , ' . e o 1 a , p 1 t , g , r 1 i . a d , t i " y . = . r , l g T o c . 7 1 2 E p 7 , 3 d 2 0 . - e d : n . # S 1 - v - t e o . c , . 1 1 . r 0 n 4 ' . 5 e h . . o f , _ 1 . , 6 1 1 n p . l _ . o 9 4 _ . a / n = i 4 c . r 4 . . r o 0 . ' i J g . . b . 0 c e - . T . - I , A T . q A . A - . . . 4 , : ' . 4 t - . f . . 2 . , . 0 2 - , . . . - 1 1 1 . ; . , , 1 . 7 e r , e - , l e , , l p , 3 p , l , p m , m / . m . a . a a . x x x E E E , 8 ) e , ) r s u e c t c n u e c r 5 t ) s , e s s , r n . ) o h o s s o b p n e , t r g ) a e a s , r y g ( s r u , s , e , l s s g , n n o ) s , l t t s b n r s f , , c e i o p e , o s d e s n e m n o s u s , i e n e r e d ( i , t d s o n i b a e r s a t r l o t r t s y e c t c i r o , c t s t t e o t t s a t s e t t n y r n u u n e e i d , s e p o ( h t c s r s o u e l m n - l i e s o m s l a p g t e n o ( c f n n F r d b r e t v e o a r n l e c a ( o s e e e c o e d n u e n r d i i v t d p o y s v b g c e p o i s i r e e e i l c e l r s t l l s l l l l l h l a l l l l l l l l 0 l l a n l l l l l a l l a l a a l l a l l a l l a t l a a l l a a a a a o a a f s f f f o f f f c f f f o f o o o f f f o o f f o f f f o o e o o o o o o o o o n . i v , a c ' . 0 n d a I F c n ( e e B I V . . a E n S a ) w L 4 ) A I e p c a v E 1 w E s * s s s s s 2 s e e E e s e e s s , s s y e s s e s s i e i s s i e e s e e i c i t c s c e i e l e e c e e c p i c e i i p i e i e c c c e e i i c i c i e i i e c c i e m m c i c c c e e e c p e c e p p e e p e p e e e p e p p e p a p s p p e p s s s p p p p s p p x s s s s s s s s s s s s s e e s e e e e e e e e e e e e e h e h e e e e h r h e h h h h h h h h o h t h h h h h h t h t t t t t t t t F t t t t t t t t t t : . t 7 s S n ) t E i n d o R e d j s y m o U i b ( d T e e n C d l r e e e e u U b v i f t R f o e c i o s y T u r e t s b S e . r . b a d t t b d n e s F l i c o m a e i O o y t s t ) d u n j r A d S s n e a n e i , i E a a r 7 r d s ) , t a s . I . e d d i c . C e b . d r s e t T , r p r E . o i i a a 6 d e d n P ( 7 n r u s o d n n S . t t a e A . e A e s . T A b o v s , 5 c e t 4 e s n n g b : = e i o n s n N m n m a e i U O . y a i A e r t l s I c b u r e T h , e n e m t e N t s d c i a r e r g E o n u e u t r n V s n u r u H t i N t c t o t l s c r l c O u i c i e w e u o C r l T h r l t w o t s t L S c T f A i f i 0 . 1 U V t e n n s " o . o 4 e 2 e 3 e h r r t I 4 , u u 1 . , e t 1 t 7 I c c t 4 , 1 t i y u c u n t b j r r i e i 1 f t t r a s d s s s , - h e - 1 y e C n i n C a f t s - i o w h n r i 4 i t g t c i a l c f a n 1 a s e = , y i n e s j d r s : i o = b e I e n e 3 i 6 v 3 t i U y l o / c t V p e 7 4 r r V e p a m e e E 4 j r P i s p v i v a o b 7 E e o x > F 4 s r r r e e 4 p r l e o h g 4 . l b 2 . n c a t 1 o a i t Y d n n 1 a Y l e T e a e T = e m R r m R s c E ) h 1 e E r o a U P o c c P r d , L p O i u f O n h 0 C d o R e u R w n h t F P P i t 9 , U s e n l e c o t y e i r r c 5 s r w u , e f 4 o t r 4 e c u 1 s w u t n 2 7 e t c r ' 1 e J i e t u c s 4 r t h r e 4 e t t - t p 4 g s e 1 3 s , s 4 1 t - ' " e r F e 1 a A h . t . i t , n s 4 3 , = i 1 I l O f l 7 a , y n : n r f ; , o a i n 1 r t = r e D 3 o n s N o 1 f F v n A i ) , l = e t e & n 0 " h h f o , f I t t 1 i t i = n ) " : e , . n e v r l ] p f n f i U m o d i c a C n L x a y E F B 2 . 7 1 U e . . . T k f j i o l t n s o l s m C n t t L a T n a o A s h E r e e g t y 7 m e i a c y l r i n t e l u d e p o p t l n m y c e s b o u s f i n r o d d s s t e s n g e e r v - e t n e r i n b u F g i p l e m l t e a c s y e r u b e o u r d f a n a r o r p r t l I e s e t e s i h b - r M e r t r f F r e a o u F n b t o f s n c o 1 n e A u y a r i l r t n e c t . r , s N o s e b i p g O m s t o n d a I u r i T n h t p n n e N T r o u e p e E o h e h V C d T t N O C . . U p 1 1 l a n A l : i A o v 3 / 0 l h g p d ) e ) o ' 3 n U c 3 ' n f r A v ( C u i i " a V 1 l h L . l ) a t e F A 9 w A c ° i F b E 7 v , F L i u e U a 9 a F C g F r m 1 l j i t n e v a = s , e i i n M r t n l s - r ) e l l F e F o - g o u A s , F b n i i ) o i r I t t a v C e i c U J c d l a a l l t e U e e ° e e a i , n L 1 s j u r d b l i j m ( l b i i , t i o e a a F f e [ l b s c a l l F c h h l g c e e y l r c c a n r i o s : t c e a a e i c J e i y e s h e e s v ] a e p s a a i t r w r s r s e o i f d o o s [ o t ) l n n f f e i t a t U F p n n A , a , c i o s s s r i e ( L c f l n o t e e f , n r u N F r t o ) e t t a u e s a a O * . i h n o t h n 4 r r o c 3 I o e i e m T t I b w e P o c n n e I m ( . a j N T n e e a i a b o a I g g . F n y e c y E ) ) t i n 2 n A 1 o D A N A 0 0 D C 4 1 s s n x s t e o t n e s i t h l s s a n n s t t d e e I u o i d s v s m s c b e o t = u e r = f f e s s o o i X . p v " n - f f s s o o x Z x f e e - o s i s i e + x c s c E 0 + e e s e * e i 1 e e i c p * c p , e e 0 = i s e c s D p p e e s e = + s + p h h e s t = e t - h 1 h 3 e t w ; 1 t t " ) h w % ! 2 + x d t + i e p 1 t 9 ( o y E : E F S 3 v 6 E . n n . y . 3 1 = = l . . . f 4 5 ) 2 e e x = ) e e ) l e 1 l p J ( p l l x l p p ( z p m m n m m ( C m e S w a a a a E a E x x x x x E E E E E 3 . e 1 S s , i s I r S . e e . r Y v u o s i 2 L t g c i , A 1 u F s n s e r N , e 0 t e s i s s r d e A e s e = - . e n w ! a i s i c F n n a r d n c t e u e g n t s p e b n n t , a c e . h s I i u . t n & u i a t . o c e o S 3 r r y , e c 1 i h e 2 t t C l 1 p , s c n t n y , e s - 7 o I 1 e f l p R o n 0 g F = a r m n 0 e O - s . t o e 2 f a i d e y s o c # T b h b i 1 i s . r ) o . t A c e r 1 1 F n d e i t e x s m _ N e o e t t b l n c e e g l a s I - e m ( a B - L t n n o b l = w l y i F t F M u i a t w d a n t l I n e n . O r N a e e w e = = = O W C n i o c 7 f I e t T i i f . . g , I f 1 E N e u T e c I s F O h n E s T e N i D H t i

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.