ebook img

Equivariant Cohomology of Configuration Spaces Mod 2: The State of the Art PDF

217 Pages·2021·8.858 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Equivariant Cohomology of Configuration Spaces Mod 2: The State of the Art

Lecture Notes in Mathematics 2282 Pavle V. M. Blagojević  Frederick R. Cohen · Michael C. Crabb  Wolfgang Lück · Günter M. Ziegler Equivariant Cohomology of Configuration Spaces Mod 2 The State of the Art Lecture Notes in Mathematics Volume 2282 Editors-in-Chief Jean-MichelMorel,CMLA,ENS,Cachan,France BernardTeissier,IMJ-PRG,Paris,France SeriesEditors KarinBaur,UniversityofLeeds,Leeds,UK MichelBrion,UGA,Grenoble,France AlessioFigalli,ETHZurich,Zurich,Switzerland AnnetteHuber,AlbertLudwigUniversity,Freiburg,Germany DavarKhoshnevisan,TheUniversityofUtah,SaltLakeCity,UT,USA IoannisKontoyiannis,UniversityofCambridge,Cambridge,UK AngelaKunoth,UniversityofCologne,Cologne,Germany LászlóSzékelyhidi ,InstituteofMathematics,LeipzigUniversity, Leipzig,Germany ArianeMézard,IMJ-PRG,Paris,France MarkPodolskij,UniversityofLuxembourg,Esch-sur-Alzette,Luxembourg SylviaSerfaty,NYUCourant,NewYork,NY,USA GabrieleVezzosi,UniFI,Florence,Italy AnnaWienhard,RuprechtKarlUniversity,Heidelberg,Germany This series reports on new developments in all areas of mathematics and their applications-quickly,informallyandatahighlevel.Mathematicaltextsanalysing newdevelopmentsinmodellingandnumericalsimulationarewelcome.Thetypeof materialconsideredforpublicationincludes: 1. Researchmonographs 2. Lecturesonanewfieldorpresentationsofanewangleinaclassicalfield 3. Summerschoolsandintensivecoursesontopicsofcurrentresearch. Textswhichareoutofprintbutstillindemandmayalsobeconsiderediftheyfall withinthesecategories.Thetimelinessofamanuscriptissometimesmoreimportant thanitsform,whichmaybepreliminaryortentative. Titles from this series are indexed by Scopus, Web of Science, Mathematical Reviews,andzbMATH. Moreinformationaboutthisseriesathttp://www.springer.com/series/304 Pavle V. M. Blagojevic´ (cid:129) Frederick R. Cohen (cid:129) Michael C. Crabb (cid:129) Wolfgang Lück (cid:129) Günter M. Ziegler Equivariant Cohomology of Configuration Spaces Mod 2 The State of the Art PavleV.M.Blagojevic´ FrederickR.Cohen InstituteofMathematics,FreieUniversität DepartmentofMathematics Berlin UniversityofRochester Berlin,Germany Rochester,NY,USA MathematicalInstituteofSerbianAcademy ofSciencesandArts Belgrade,Serbia MichaelC.Crabb WolfgangLück InstituteofMathematics MathematischesInstitut UniversityofAberdeen UniversitätBonn Aberdeen,UK Bonn,Germany GünterM.Ziegler InstitutfürMathematik FreieUniversitätBerlin Berlin,Germany ISSN0075-8434 ISSN1617-9692 (electronic) LectureNotesinMathematics ISBN978-3-030-84137-9 ISBN978-3-030-84138-6 (eBook) https://doi.org/10.1007/978-3-030-84138-6 MathematicsSubjectClassification:55R80,55N25,57R22,57R42 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewhole orpart ofthematerial isconcerned, specifically therights oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting, reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Thisbookisdedicatedto Aleksandra,Helen, Sarah,Torsten,andVera Preface Thesystematicstudyoftheorderedconfigurationspace F(M,n):={(x ,...,x )∈Mn :x (cid:3)=x forall1≤i <j ≤n} 1 n i j of all ordered n-tuples of distinct points on a manifold M started in 1962 with theworkofFadellandNeuwirth[47]andFoxandNeuwirth[52],withprehistory going back to the work of Artin [7–9]. Soon after, Arnold, in his seminal work [5] from 1969, gave a description of the integral cohomologyring of the ordered configuration space F(R2,n). From that point on, the topology of the ordered configurationspaceswasstudiedveryintensivelyfrommanyaspects,whilefinding applicationsindiverseproblems,theories,andevendifferentfieldsofmathematics andbeyond,notablyinphysics. Each configurationspace F(M,n) is equippedwith a naturalfree action of the symmetricgrouponnlettersS ,givenbythepermutationofpoints.Theassociated n orbitspaceF(M,n)/S ,calledtheunorderedconfigurationspace,isanimportant n andchallengingobjecttostudy.(Thefreeactionofthesymmetricgroupisalsoan essentialingredientofthelittlecubesoperadstructuretobediscussedlater.) In his influential 1970 paper [53] using fundamental new ideas, Fuks, gave a description of the cohomology algebra of the unordered configuration space H∗(F(R2,n)/S ;F )asanimageofthecohomologyH∗(BO(n);F ).Inthecourse n 2 2 ofstudyofinfiniteanditeratedloopspaces,objectsofthesamehomotopytypeas the configuration space F(Rd,n) were invented by Boardman and Vogt [17] and adapted in a beautiful way by May [76, Sec.4] for the definition of an important structure that we now call the little cubes operad; see Chap.7. Frederick Cohen, in his1976contribution[33], gavethe first descriptionsof the cohomologyofthe unorderedconfigurationspaceF(Rd,n)/S ,fornaprime,withtrivialcoefficients n (including the ring structure) and with twisted coefficients (includingthe relevant modulestructure)[33,Thm.5.2andThm.5.3]. The homology of the unordered configuration space for points on a smooth manifold M has been determined in 1989 by Bödigheimer et al. [20] in the case when M is odd-dimensional and coefficients are in an arbitrary field, and in the vii viii Preface casewhenM iseven-dimensionalandcoefficientsareinafieldofcharacteristic2. More precisely, for even-dimensionalmanifolds, they computed the homology of theunorderedconfigurationspaceofM withcoefficientsinthefieldtwistedbythe signrepresentation.TheseresultsweregivenintermsofCohen’scomputationfor thecaseM = Rn.Somefurtherresults,foraneven-dimensionalorientableclosed manifoldand the rationals as the field of coefficients, were obtained by Félix and Thomas[50]. NguyênHu˜’uViêt Hu’ng, in a series of papers [61–64] from 1981 until 1990, studied the mod 2 cohomology algebra of the symmetric group S and of the n unorderedconfigurationspaceF(Rd,n)/S in thecase whennisa poweroftwo. n The key paper in this series, [64], which contained detailed proofs for all results announcedin[62],wasapparentlyfinishedinAugustof1982,butaftersomedelays (describedin [64, Footnote1 on p.286])was publishedonly in 1990.The central ideawas – Toconsideranaturalembedding Pe(Rd,2m) ecyd,2m F(Rd,2m) oftheproductofspheresPe(Rd,2m)=(Sd−1)2m−1intotheconfigurationspace F(Rd,2m), which turns out to be equivariantwith respect to the action of the Sylow2-subgroupS2m ofthesymmetricgroupS2m. – To describe the cohomology ring H∗(Pe(Rd,2m)/S2m;F2) of the quotient spacePe(Rd,2m)/S2m usingthehomeomorphism (cid:2) (cid:3) Pe(Rd,2m+1)/S2m+1 ∼= Pe(Rd,2m)/S2m ×Pe(Rd,2m)/S2m ×Z2 Sd−1 viaaninductivecomputation. – Toprovethattheinducedhomomorphismincohomology H∗(F(Rd,2m)/ 2m;F2) (id/ 2m)∗ H∗(F(Rd,2m)/S2m;F2) (ecyd,2m/S2m)∗ H∗(Pe(Rd,2m)/S2m;F2) isamonomorphism.Here(id/S2m)∗ isdirectlyamonomorphismsinceS2m is aSylow2-subgroupofS2m andcohomologyisconsideredwithF2coefficients. Thus,themaindifficultyliesinprovingthat(ecyd,2m/S2m)∗ isinjective. In this way, the cohomology ring H∗(F(Rd,2m)/S2m;F2) of the unordered con- figuration space F(Rd,2m)/S2m could be seen as a subring of the now-known cohomologyringH∗(Pe(Rd,2m)/S2m;F2). This series of papers, and in particular the paper [64], feature extended and substantialcalculations.Itturnedouttobeimportantandinfluential.Itwasquoted, and its main result was used, in quite a number of papers since then, such as Preface ix Vassiliev’s 1988 and 1998 papers on braid group cohomologies and algorithm complexity [98] and r-neighborly embeddings of manifolds [100], Crabb’s 2012 survey on the topological Tverberg theorem and related topics [42], Karasev and Landweber’s2012paperonhighertopologicalcomplexityofspheres[68],Karasev and Volovikov’s 2013 paper on the waist of the sphere theorem for maps to manifolds[69],Matschke’s2014paperonaparameterizedBorsuk–Ulam–Bourgin– Yang–Volovikovpaper[74],aswellasKarasev,Hubard,andAronov’s2014paper onthe“spicychickentheorem”[67]. Noneofthesepapersmentionedthefactthat—aswewilldocumentinSect.4.1 of the present work—Hu’ng’s proof for his main result [62, Thm.2.3] and [64, Thm.3.1] is incorrect,as are some of his intermediateand follow-upresults. This doesnotjeopardizethepaperslistedabove,asHu’ng’smainresult,theinjectivityof thecomposition(ecyd,2m/S2m)∗◦(id/S2m)∗,holds,aswewilldemonstrate—bya new,entirelydifferent,homotopy-theoreticproof—inSect.4.2ofthisbook. Incontrasttotheaboveworks,the2016paperofBlagojevic´etal.[15]—bythree of the present authors—did not only quote Hu’ng’s papers, but it also used some of Hu’ng’s intermediate results in an essential way, specifically the decomposition oftheequivariantcohomologyclaimedin[64,(4.7),page279].Ourcomputations in [15] based on this led to results that are not consistent with some of Crabb’s computationsrelatedto [42]. Thisled to our discoveryof the substantialmistakes inHu’ng’spaper,includingthefactthatthedecompositionof[64,(4.7),p.279]is notcorrect,whichalsoinvalidatesthemainresultsof[15]andtwominorfollow-up corollariesgivenin[14]. Thus, the second main purpose of the present book is to correct our work in [14]andin[15],bypresentingalternativearguments,basedonthecorrectedproof forHu’ng’stheorem,towardsestimatesforthedimensionsofk-regularembeddings andtheirrelatives.Theresultswegetareinsomecasesweakerthanwhatwe had claimedbefore,inothercaseswerecreatethepreviouslyclaimedresultsinfull. Thistextisorganizedasfollows.(Seebelowforasummaryofnotationsaswellas fordefinitionsandbackground.) – InChap.2wedescribetheS2m-equivariantembedding ecyd,2m: Pe(Rd,2m) F(Rd,2m) ofthe(d−1)(2m−1)-dimensionalmanifoldPe(Rd,2m)∼=(Sd−1)2m−1intothe classicalconfigurationspaceF(Rd,2m).Furthermore,werelatetheembedding ecy withthestructuralmapofthelittlecubesoperad. d,2m – In Chap.3 we study the S2m-equivariant cohomology HS∗2m(Pe(Rd,2m);F2) usingtheSerrespectralsequenceassociatedtothefiberbundle X×X (X×X)×Z2 EZ2 BZ2. x Preface Thehighlightofthatchapteristheproofofthedecompositionofthecohomol- ogygiveninTheorem3.11: H∗ (Pe(Rd,2m);F ) S2m 2 ∼=F [V ,...,V ]/(cid:8)Vd ,...,Vd (cid:9)⊕I∗(Rd,2m), 2 m,1 m,m m,1 m,m whereI∗(Rd,2m)isanideal,anddeg(V )=2r−1for1≤r ≤m. m,r – InChap.4wediscusstheclaimthattheinducedhomomorphismincohomology (ecyd,2m/S2m)∗: H∗(F(Rd,2m)/S2m;F2) H∗(Pe(Rd,2m)/S2m;F2) isamonomorphism,orequivalentlythatthehomomorphism (ecyd,2m/S2m)∗◦(id/ 2m)∗: H∗(F(Rd,2m)/ 2m;F2) H∗(Pe(Rd,2m)/S2m;F2) is a monomorphism. In Sect.4.1 we present the proof for injectivity of (ecyd,2m/S2m)∗ givenbyHu’ngin[64,Thm.3.1]anddocumentseveralcritical gapsthat invalidate this proof.In particular, the failure of decomposition[64, (4.7)]willbeillustratedbyacounterexampleinClaim4.5.Thenewinductive proof of the injectivity of (ecyd,2m/S2m)∗, or (ecyd,2m/S2m)∗ ◦(id/S2m)∗, is given in Sect.4.2. More precisely, for the inductive step, using the presen- tation of homology of the configuration space via Araki–Kudo–Dyer–Lashof homologyoperations,weprovethatthestructuralmapofthelittlecubesoperad induces,nowinhomology,anepimorphism (μd,2m)∗: H∗((Cd(2m−1)/ 2m−1 ×Cd(2m−1)/ 2m−1)×Z2 Cd(2);F2) H∗(Cd(2m)/ 2m;F2); seeTheorem4.8. – Additionally in Sect.4.3, motivated by the results of Atiyah [10] and Giusti et al. [55] we prove, as an interesting fact, that the homologyof the space of allfinitesubsetsofRd withadditionofabasepointandappropriatelydefined multiplicationisapolynomialring. – In Chap.5, based on the results of the previous chapters, we explain the induced gaps in the results given by three of the present authors in [15, Thm.2.1, Thm.3.1, Thm.4.1] and [14, Thm.5.1, Thm.6.1] and correct all of them. In particular, corrected lower bounds for the existence of k-regular, (cid:2)- skew and k-regular-(cid:2)-skew embeddings of an Euclidean space are given; see Theorems5.14,5.18,and5.22.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.