RESEARCHARTICLE Environmental characteristics drive variation in Amazonian understorey bird assemblages JulianaMenger1,2,3*,WilliamE.Magnusson3,MartiJ.Anderson4,MartinSchlegel2,5, GuyPe’er1,5,KlausHenle1,5 1 UFZ–HelmholtzCentreforEnvironmentalResearch,DepartmentofConservationBiology,Leipzig, Saxony,Germany,2 FacultyofBiosciences,PharmacyandPsychology,UniversityofLeipzig,Leipzig, Saxony,Germany,3 Coordenac¸ãodePesquisaemBiodiversidade,InstitutoNacionaldePesquisasda Amazoˆnia-INPA,Manaus,Amazonas,Brazil,4 NewZealandInstituteforAdvancedStudy-NZIAS,Albany Campus,MasseyUniversity,Auckland,NewZealand,5 GermanCentreforIntegrativeBiodiversityResearch a1111111111 (iDiv)Halle-Jena-Leipzig,Leipzig,Saxony,Germany a1111111111 a1111111111 *[email protected] a1111111111 a1111111111 Abstract Tropicalbirdassemblagesdisplaypatternsofhighalphaandbetadiversityand,astropical birdsexhibitstronghabitatspecificity,theirspatialdistributionsaregenerallyassumedtobe OPENACCESS drivenprimarilybyenvironmentalheterogeneityandinterspecificinteractions.However,spa- Citation:MengerJ,MagnussonWE,AndersonMJ, tialdistributionsofsomeAmazonianforestbirdsarealsooftenrestrictedbylargeriversand SchlegelM,Pe’erG,HenleK(2017)Environmental otherlarge-scaletopographicfeatures,suggestingthatdispersallimitationmayalsoplaya characteristicsdrivevariationinAmazonian understoreybirdassemblages.PLoSONE12(2): roleindrivingspecies’turnover.Inthisstudy,weevaluatedtheeffectsofenvironmental e0171540.doi:10.1371/journal.pone.0171540 characteristics,topographicandspatialvariablesonvariationinlocalassemblagestructure Editor:PauloDeMarcoJu´nior,Universidade anddiversityofbirdsinanold-growthforestincentralAmazonia.Birdsweremist-nettedin FederaldeGoias,BRAZIL 72plotsdistributedsystematicallyacrossa10,000hareserveineachofthreeyears.Alpha Received:April27,2016 diversityremainedstablethroughtime,butspeciescompositionchanged.Spatialvariation inbird-assemblagestructurewassignificantlyrelatedtoenvironmentalandtopographicvari- Accepted:January22,2017 ablesbutnotstronglyrelatedtospatialvariables.Atabroadscale,wefoundbirdassem- Published:February22,2017 blagestobesignificantlydistinctbetweentwowatershedsthataredividedbyacentral Copyright:©2017Mengeretal.Thisisanopen ridgeline.Wedidnotdetectaneffectoftheridgelineperseindrivingthesepatterns,indicat- accessarticledistributedunderthetermsofthe ingthatmostbirdsareabletoflyacrossit,andthatdifferencesinassemblagestructure CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and betweenwatershedsmaybeduetounmeasuredenvironmentalvariablesoruniquecombi- reproductioninanymedium,providedtheoriginal nationsofmeasuredvariables.Ourstudyindicatesthatcomplexgeographyandlandscape authorandsourcearecredited. featurescanacttogetherwithenvironmentalvariablestodrivechangesinthediversityand Dataavailabilitystatement:Birddataanalyzedin compositionoftropicalbirdassemblagesatlocalscales,buthighlightsthatwestillknowvery thisstudyaredepositedinthePPBio,MetaCat littleaboutwhatmakesdifferentpartsoftropicalforestsuitablefordifferentspecies. Repository:https://ppbiodata.inpa.gov.br/#view/ PPBioAmOc.82.4. Funding:TheBrazilianScienceFundingAgency CAPES(Coordenac¸ãodeAperfeic¸oamentode PessoaldeN´ıvelSuperior)awardedstipendtoJM (Process12401129).TheEUFP7projectEUBON Introduction fundedGP(contract308454).Bird-datacollection Understandingprocessesthatdrivespatio-temporalchangesinspeciesrichness,abundance wasfinancedbytheBrazilianProgramfor andcompositionisacentralobjectiveofcommunityecology.Severaltheorieshavebeen BiodiversityResearchPPBio(Grant457544/2012- 0),theNationalInstituteforAmazonianBiodiversity advancedtoexplainhowsomanyspeciescancoexistinmegadiversetropicalforests.While PLOSONE|DOI:10.1371/journal.pone.0171540 February22,2017 1/20 EnvironmentdrivesAmazonianunderstoreybirdassemblages INCT-CENBAM(Grant573721/2008-4)andthe nichetheorysuggeststhatspecies’distributionsaredrivenbyenvironmentalheterogeneity BrazilianLong-TermEcologicalResearchProject andspecies’interactions[1–4],neutraltheorypositsthatspecies’distributionsariselargely PELD(Grant403764/2012-2)throughtheBrazilian fromrandomprocesses,withlocalassemblagecompositionbeingdeterminedmainlybysto- NationalResearchCouncilCNPq.Thefundershad chasticprocessesanddispersallimitation[5].Empiricalstudiesattemptingtodisentanglethe noroleinstudydesign,datacollectionand relevanceofnichevs.neutralprocessesinshapingthecompositionoftropicalassemblages analysis,decisiontopublish,orpreparationofthe manuscript. haveshowncomplementaryeffectsofenvironmentalfactorsanddispersallimitation[6–12], withtheirrelativeimportanceoftendependingonthespatialscaleofthestudy. Competinginterests:Theauthorshavedeclared Manypreviousstudieshaveusedgeographicaldistanceasaproxyfordispersallimitation, thatnocompetinginterestsexist. withoutexplicitlymodelingpotentialeffectsofphysicallandscapefeaturesthatmayactasbar- rierstospecies’movement[9].Forinstance,inlowlandAmazonia,largerivershavebeeniden- tifiedasbarrierstodispersalofseveralvertebratespecies[13].Atlargescales,some Amazonianforestbirdshavedistributionsrestrictedtodistinctareasofendemism,delimited primarilybythemajorAmazonianrivers[14–19].Atfinerscales,thereisgrowingevidence thatAmazonianforestbirdshaverestricteddispersal[20–23].Locallandscapefeatures,such asmosaicsofinhospitableareasandevennarrowroadsthroughaforest,mayactasbarriers, limitingbirdterritoriesandmovements[24–26]. Nonetheless,withinaninterfluve,variationinAmazonianforestbirdcommunitiesisusu- allyassumedtobedrivenprimarilybyenvironmentalheterogeneityandinterspecificinterac- tions,ratherthanbydispersallimitation[4,27].Indeed,mostAmazonianforestbirdsare thoughttobehabitatspecialists,andtheirspatialpatternsofdiversityandcompositionare affectedbyenvironmentalfactors,suchasvegetationstructure,floristiccompositionand topography[28–34].Althoughtheroleofdispersaltraitsinstructuringavianassemblagesin fragmentedlandscapeshasbeeninvestigated[35],fewstudieshavesimultaneouslyinvesti- gatedtheeffectsofenvironmentalcharacteristicsanddispersallimitationonAmazonianbird- assemblagesinnaturallyheterogeneouslandscapes(butsee[9,31]). Here,weinvestigatetheeffectsofenvironmentalcharacteristics,landscapefeaturesandspa- tialvariablesonvariationinthediversityandstructureofbirdassemblagesina10,000ha reserveincentralAmazonia,Brazil.WesampledunderstoreybirdsintheDuckeForest Reserve(DFR,Fig1),whichiscoveredbylargelyundisturbedold-growthforest.Althoughthe urbansprawlofthecityofManaushasreachedthesouthernandwesternlimitsofDFR,the reserveisstillconnectedtocontinuousforestonitseasternsideanddoesnotshowanyobvi- ousimpactsofurbanizationwithinitslimits.Smallstreamsareabundantinthearea,resulting inanundulatingterrainwithridgesupto140mabovesealevel(a.s.l.),interspersedbyvalleys thatmaybeaslowas40ma.s.l.,yieldinghighenvironmentalvariation[36].Moreover,the reserveistraversedbyacentralridgewhichrunsfromnorthtosouth,dividingDFRintotwo majorwatersheds:thewesternwatersheddrainstotributariesoftheNegroRiver(blackwater), whiletheeasternwatersheddrainstotributariesoftheAmazonRiver(whitewater).Thespa- tialconfigurationofDFRprovidesanexcellenttest-bedfortheevaluationofenvironmental, topographicandspatialfactorsaffectingforest-birdassemblagestructureatalocalscale. Despiteitssmallelevationalrange,wehypothesizedthatthecentralridgelinereducesbird movementsacrosswatersheds,contributingtodistinctbirdassemblagesineachwatershed. Weinvestigatedspatiotemporalvariationindiversityandassemblagestructureandquantified theextenttowhichenvironmental,topographicandspatialvariablesexplainthesepatterns. Methods Ethicsstatement FieldworkwascarriedoutwithauthorizationandapprovaloftheBrazilianBiodiversity AuthorizationandInformationSystem—SISBIO(Permit34850)andoftheBrazilianCenter PLOSONE|DOI:10.1371/journal.pone.0171540 February22,2017 2/20 EnvironmentdrivesAmazonianunderstoreybirdassemblages Fig1.LocationofDuckeForestReserve(DFR),Manaus,AmazonasState,Brazil.LocationofDFRinrelationtothecityofManausandtothe mainrivers(a);Topography,streamsandthesystemoftrails(dashedlines)inthestudyarea,showingthe72samplingplots(b).Thebrownline marksthedivisionofthereserveintoeastern(n=34)andwestern(n=38)watersheds.Thecolorsoftheplotsindicatethethreeenvironmentalgroups identifiedbyK-meanspartitioning.BeigedotsrepresentLowareas(n=20),palegreendotsrepresentHighareas(n=31),anddarkgreendots representSlopeareas(n=21). doi:10.1371/journal.pone.0171540.g001 forBirdBandingandConservation—CEMAVE(Permit3576).Theselicensescoveredallnec- essaryanimalethics,includingapermittocapturebirds,andappropriatemethodsforhan- dlingandbandingthebirds,inaccordancewiththeenvironmentallegislationofBrazil (Instruc¸ãoNormativaIBAMAN˚27/2002andInstruc¸ãoNormativaICMBioN˚154/2007); followingprotocolsestablishedbyCEMAVE[37].Weaffirmfieldworkdidnotinvolveendan- geredorprotectedspecies. Studysite TheDuckeForestReserve(02˚55’–03˚01’S,59˚53’–59˚59’W),locatedontheoutskirtsof Manauscity,Amazonasstate,Brazil(Fig1a),iscoveredbyterrafirmeforeststhatarenot subjecttolong-termfloods[36].Theunderstoreyisdominatedbyacaulescentpalmsand shadedbyaclosedcanopy.Soiltypevariesalonganelevationgradient;soilswithhigherclay contentoccurathigherelevationandsandiersoilsoccuratlowerelevation[38].Themean annualtemperatureandprecipitationfrom1979to2008were26˚Cand2524mm,respec- tively[39].ArainyseasontypicallyoccursfromNovembertoJuneandadryseasonfrom JulytoOctober[36]. DFRisasiteintheBrazilianLongTermEcologicalResearch(LTER)networkandhasasys- tematicsamplinggridthatispartoftheBrazilianBiodiversityResearchProgram(PPBio, PLOSONE|DOI:10.1371/journal.pone.0171540 February22,2017 3/20 EnvironmentdrivesAmazonianunderstoreybirdassemblages https://ppbio.inpa.gov.br).Thegridgivesaccessto72permanentplotsplacedsystematicallyat 1-kmintervalsalongnineeast-westtrails(Fig1b).Eachplotis250minlengthandfollows topographiccontourlinestoavoidwithin-plotedaphicvariation[40,41]. Birdsampling Wesampledbirdsinall72plotsoftheDFRduringthedryseasonineachofthreeconsecutive years(2012–2014).Toavoidbiasesincaptureratesduetonetavoidance[42],eachplotwas sampledonasingledayduringeachsamplingperiod.Sixteenmist-nets(each9mlong,32 mmmeshsize)weresetinpairsat10-mintervalsalongthe250mlengthofeachplot[43]. Mist-netswereopenedbetween06:00and12:00andinspectedevery40min.Birdscaptured wereidentifiedandbandedwithmetalbandsissuedbyCEMAVE.Thetotalabundanceof eachspeciescapturedineachnettingeventwasaggregatedperplot.Mist-nettingisawidely usedtechniquetosampleunderstoreybirds,asitdetectsmorecryptic,ground-foragingand non-singingbirdsthanauralorvisualsurveys[28].However,itisalsoknowntounder-sample specieswhichusuallyflyabovenetlevel,andonlyoccasionallydescendtotheground[32].To evaluatewhetherunder-samplingmightinfluencetheresults,weanalyzedthedataintwosep- aratesets:1)“allspecies”(98spp,seeResults)–whichincludedallspeciescapturedand;2) “commonforestunderstoreyspecies”(63spp)–whichincludedonlyspeciescapturedinmore thantwoplots,thatusepredominantlythelowerlayersoftheforest,anduseprimarilyterra firmeforests(following[44]).BirddataanalyzedinthisstudyaredepositedinthePPBio, MetaCatRepository:https://ppbiodata.inpa.gov.br/#view/PPBioAmOc.82.4[45]. Identificationofenvironmentalgroups Dataonelevation,slope,clayandsiltcontentofthesoil,treeandpalmdensity,distancetothe neareststreamandgeographicalcoordinates(latitudeandlongitude)foreachplotwereused asexplanatoryvariables(S1Table,assharedonthePPBiowebsite).Elevation,slope,distance totheneareststream,clayandsiltcontentofthesoil,treeandpalmdensitywerenormalized toz-scores,andK-meanspartitioning[46,47]wasusedtoidentifygroupsofplotsbasedon theseenvironmentalvariables.Wedeterminedthenumberofgroupsbyconsideringthepat- ternofdecreaseinthewithin-groupsumofsquareddistancestocentroidswithincreasing numbersofgroups(K).Thewithin-groupsumofsquareswascalculatedfrom2to8groups. Welookedforan“elbow”intheplottomakeadecisionaboutanappropriatenumberof groupsandconsidered3,4,5or6groupstobepotentiallyreasonable.Principalcomponent analysis(PCA)wasusedtovisualizeanddescribethegroupsintermsoftheenvironmental variablesthatgaverisetothem.ThePCAshowedaclearseparationofthe72plotsintothree groups(S1Fig),butotherpotentialgroupingseithershowedmixedsymbolsacrossthePCA spaceorgeneratedindividualoutliers.Wethereforesubsequentlyusedthreegroupstorepre- senttheenvironmentalvariationwithinDFR(Fig1,S1Fig).Accordingly,plotsingroup1 (n=20)werecharacterizedasoccurringatlowelevation,beingclosetostreamsandhaving highpalmdensities(hereafterreferredtoas“Lowareas”);plotsingroup2werecharacterized asoccurringathighelevation(n=31)andhavingsoilswithhighclayandsiltcontent(“High areas”);plotsingroup3(n=21)werecharacterizedasoccurringonrelativelysteepslopesand havinghightreedensities(“Slopeareas”). Analysesofbirdrichnessandabundance ANOVAwasusedtopartitionvariationineachoftwovariables:numberofbirdspeciescap- turedperplotandlogtotalabundanceaccordingtothreefactors:‘Year’(fixedwiththreelev- els:2012,2013and2014),‘Watershed’(fixedwithtwolevels:easternandwestern)and PLOSONE|DOI:10.1371/journal.pone.0171540 February22,2017 4/20 EnvironmentdrivesAmazonianunderstoreybirdassemblages ‘Environmentalgroup’(fixedwiththreelevels:Lowareas,Highareas,andSlopeareas).We testedforinteractioneffectsandusedTukey’sHSDtestsforaposterioripairwisecomparisons. TheseanalyseswerecarriedoutusingtheRstatisticalprogram[48]. Analysesofbirdassemblagestructure Comparisonsamongyears,watershedsandenvironmentalgroups. Permutationalmul- tivariatedissimilarity-basedANOVA(PERMANOVA[49,50])wasusedtopartitionvariation inbirdassemblagestructureonthebasisofazero-adjustedBray-Curtisdissimilaritymatrix [51]calculatedfromsquare-roottransformedabundances.Athree-factorPERMANOVA (withthefactors‘Year’,‘Watershed’,and‘Environmentalgroup’)wascarriedout.P-valuesfor allmaineffects,interactiontermsandaposterioripairwisecomparisonswereobtainedusing 9999permutationsofresidualsunderareducedmodel[52,53].Tovisualizepatternsofdiffer- encesamongmultivariatecentroids,weconstructedmetricmulti-dimensionalscaling (mMDS)plotsof100bootstrapmeanswith95%confidenceregions[54]. Acompoundgraph[55]wasusedtocharacterizethespatialturnoverofindividualbirdspe- ciesacrossthetwowatersheds.Inaddition,canonicalanalysisofprincipalcoordinates(CAP [56,57])wasusedtomodelthethreeenvironmentalgroupsonthebasisofthedissimilarity matrix,andleave-one-outmisclassificationerror[58]wasusedtodeterminethenumberof principalcoordinate(PCO)axes(m)tousefortheCAPmodelandalsotomeasurethedistinc- tivenessofeachofthegroups.VectorscorrespondingtorawPearsoncorrelationsofindividual birdspeciesvariableswitheachoftheresultingCAPordinationaxeswereusedtocharacterize theavifaunaassociatedwitheachapriorienvironmentalgroup.AllCAPandPERMANOVA analysesweredoneusingPRIMERv7[54]withthePERMANOVA+add-onpackage[59]. Relationshipswithenvironmental,topographicandspatialpredictorvariables. To relatevariationinbirdassemblagestructurewithenvironmental,topographicandspatialpre- dictorvariables,abundancedatawerefirstsummedwithinplotsacrossyears.Weconsidered threedifferentgroupsofpredictorvariables:(i)thosevariablesthatdirectlycharacterizedenvi- ronmentalconditions(i.e.,clay,silt,treedensity,palmdensityanddistancetothenearest stream);(ii)thosevariablesthatidentifiedgeographicalfeatureshavingthree-dimensional structure(i.e.,elevation,slopeandwatershed—asinglevariablecodingthecontrast(+1,-1)of easternvs.westernwatersheds);and(iii)purelyspatialvariables,consistingoflatitude(y)and longitude(x),whichforsimplicitywereeachscaledtoarangeof0–10,alongwiththeirpoly- nomialsupto3rdorder(e.g.,[60]).Althoughtopographicvariablessuchasslopeandelevation tendtobecorrelatedwithother(measuredandunmeasured)environmentalvariables,theydo infactcorrespond,strictlyspeaking,tostructuralmeasuresofthelandscape. Therationalefortheapproachwetooktorelatebirdassemblageswithpotentialpredictor variableshadthreeimportantfeatures:(i)weallocatedpredictorvariablesintosubsetsthat weredirectlyalignedwithapriorihypothesesconcerningpotentialdriversofbioticvariation inthebirds;(ii)themethodologyusedtoidentifyanappropriatenumberofvariablesthat mightusefullybeincludedinparsimoniousmodels(eitherwithineachsubsetoroverall)was achievedusingnon-arbitrarysequentialconditionalpermutationtests;and(iii)the“best” model(onceagain,eitherwithinsubsetsoroverall)wasidentifiedusinganinformationcrite- rionapproach.Notethatstep(ii)wasnotusedtoidentifya“best”model,nortoidentifywhich particularvariablesshouldbeincludedinsuchamodel. Ouranalyseshadtwoaims.First,wewishedtocomparetherelativeimportance,overlap andstrengthoftheassociationbetweeneachofthesethreesetsofpredictorvariables(environ- mental,topographicandspatial)andthebirdassemblages.Second,wewishedtofindaparsi- moniousmodelusingallpotentialpredictorvariablesindividuallyandtakingintoaccount PLOSONE|DOI:10.1371/journal.pone.0171540 February22,2017 5/20 EnvironmentdrivesAmazonianunderstoreybirdassemblages theircorrelations.Forthefirstaim,webeganbyobtainingaparsimonioussubsetofvariables separatelyforeachofthethreesetsusingforwardselectionandsequentialconditionaldis- tance-basedredundancyanalysis(dbRDA[50,61])tests(with9999permutationsundera reducedmodel[52,53])toexplainthevariationinthezero-adjustedBray-Curtisdissimilarity matrixofsquare-root-transformedbird-assemblagedata.AP-valuethatexceeded0.10was usedasacut-offinthesuiteofsequentialconditionalteststoidentifythenumberofvariables (q)thatwouldbesensibletoretain.WethenimplementedtheDISTLMmodel-selectiontool inPERMANOVA+forPRIMERv7[59]tofindthebestq-variablesubsetwithineachset, basedonadirectmultivariateanaloguetothesmall-sample-correctedAkaikeinformationcri- terion(AICc[59,62]).Theparsimoniousenvironmental,topographicandspatialsubsets obtainedwerethenusedtomakecomparisonsamongthesethreesets.Thiswasdonebycom- paringtheirAICcvaluesdirectlyandalsobydoingforwardselectionandassociatedsequential conditionaltestsofthesethreesubsets(Forfurtherdetailsconcerningthefittingandselection ofwholesetsofvariablesusingDISTLM,see[59]). Forthesecondaim,wefirstexaminedthePearsoncorrelationsamongallpairsofvariables. WethenuseddbRDAtomodeltherelationshipbetweenbirdassemblagestructureandallof thepredictorvariables,asfollows.First,eachvariablewasseparatelytestedforitsindividual relationshipwithbirdassemblagestructure(ignoringothervariables)inaseriesofmarginal tests,eachwith9999permutations.Next,weappliedaforward-selectionwithsequentialcon- ditionaltestsusingDISTLMtoidentifythenumberofvariables(q)thatmightsensiblybe includedinaparsimoniousmodel,considering(asbefore)acut-offofP>0.10inthesequen- tialteststoidentifyq.Finally,thebestq-variablemodelwasidentifiedonthebasisofthedirect multivariateanaloguetoAICcinordertoobtainanoverallparsimoniousmodel,whosefitted valueswerethenvisualizedusingdbRDA[59].Themodelresultingfromtheaboveprocedure wasalsocomparedwiththemodelthatwouldhavebeenobtainedusingadirect,uncon- strainedandexhaustivesearchoverallpossiblepredictorvariablesonthebasisoftheAICc criterion. Results Birdrichnessandabundance Wecaptured2483birdsbelongingto98species,includingCacicussolitariusVieillot1816,a newrecordforDFR(S2Table).Themeannumberofindividualscapturedperplotperyear was11.5(±0.43SE)andrangedfrom2to42.Themeannumberofspeciescapturedperplot peryearwas7.57(±0.23SE)andrangedfrom2to18.The21most-capturedspecies(each havingatotalabundanceof(cid:21)30individualscapturedacrossthethreetimeperiods) accountedfor77%ofallcaptures.Twenty-threespecieswerecapturedonlyonce.Recapture ratewas7%;mostindividualswererecapturedinthesameplottheywereoriginallycaptured, and35specieswererecapturedatleastonceoverthethreeyearsofstudy. Ouranalyseswiththetwoseparatesetsofbirddata(allspeciesandcommonforest understoreyspecies)yieldedsimilarresults,thusweshowresultsusingall98capturedspe- cies(seeS1Fileforresultsobtainedusingtheothersubset).Meannumberofspeciescap- turedperplotandlogabundanceofbirdsdidnotvarysignificantlyoverthethreeyearsof sampling(F =1.602,P=0.204,andF =1.450,P=0.237,respectively),butdiddiffersignif- 2 2 icantlybetweenwatersheds(F =8.255,P=0.005;F =8.775,P=0.003,respectively),witha 1 1 greateraveragenumberofspeciesandlogabundanceofbirdsoccurringintheeasternthan inthewesternwatershed(Fig2aand2b,respectively).Thereweresignificantdifferences amongtheenvironmentalgroupsinmeannumberofspeciescaptured(F =3.447, 2 P=0.034),butnotinmeanlogabundance(F =1.679,P=0.189)(Fig2cand2d, 2 PLOSONE|DOI:10.1371/journal.pone.0171540 February22,2017 6/20 EnvironmentdrivesAmazonianunderstoreybirdassemblages Fig2.Numberofspeciesandabundanceofbirdsvs.environmentalgroupsandwatersheds.Meannumberofspeciescapturedperplotor meanabundanceindifferentwatersheds(aandb,respectively)andindifferentenvironmentalgroups(candd,respectively).Barsindicate95% confidenceintervals. doi:10.1371/journal.pone.0171540.g002 respectively).Nosignificantinteractionsweredetectedbetweenanyofthefactors(all P>0.1).Tukey’sHSDtestsindicatedplotslocatedinHighareashadasignificantlyhigher meannumberofspeciescaptured(P=0.05)thanplotsinSlopeareas;nootherpairwise comparisonswerestatisticallysignificant(P>0.1). PLOSONE|DOI:10.1371/journal.pone.0171540 February22,2017 7/20 EnvironmentdrivesAmazonianunderstoreybirdassemblages Birdassemblagestructure Comparisonsamongyears,watershedsandenvironmentalgroups. Thereweresignifi- cantdifferencesinbirdcompositionamongyears(PERMANOVApseudo-F =1.515, 2 P=0.042;Fig3a);betweenwatersheds(pseudo-F =1.932,P=0.018;Fig3b),andamongenvi- 1 ronmentalgroups(pseudo-F =3.035,P<0.001;Fig3c).Therewerenosignificantinterac- 2 tionsbetweenanyofthefactors(P>0.1).Pairwisetestsindicatedthatonlythebird assemblagesfrom2012and2014differedsignificantlyfromoneanother(Fig3a,S3Table), whereastheassemblagesofbirdsineachofthethreeenvironmentalgroupsclearlydifferedsig- nificantlyfromoneanother(Fig3c,S3Table).Turnoverintheidentitiesofbirdspecies betweenthetwowatershedsisshowninS2Fig. TheHighandLowareashaddistinctavifaunalassemblages,eachshowing~70%alloca- tionsuccessintheCAPmodelwithm=13PCOaxes(S3Fig).Lowareaswerecharacterized bybirdsthatoccurmorefrequentlyinriparianhabitats(e.g.,Phaethornissuperciliosus,Cam- pylopteruslargipennis,Mionectesmacconnelli,SchistocichlaleucostigmaandOnychorhynchus coronatus[32,43,44]),whilesomemixed-speciesflockingbirdstendtooccurmorefre- quentlyinHighareas(e.g.,Thamnomanesspp.,Myrmotherulaspp.,Xenopsminutus,Decony- churalongicaudaandHylophilusochraceiceps[63]).Slopeareaswerelessdistinct(only~43% allocationsuccessundertheCAPmodel),butdidshowagreaterprevalenceoffrugivorous birds,suchasLepidothrixserena,Pseudopiprapipra,CorapipogutturalisandPteroglossusviri- dis(S3Fig). Relationshipswithenvironmental,topographicandspatialpredictorvariables. Sequentialtestsoftheenvironmentalsetoffivevariablesindicatedthatq=3variableswould besufficienttocapturethevariationexplainedbythissetinaparsimoniousway(S4Table). Thebest3-variablemodelfortheenvironmentalset(basedonAICc)containedthevariables ofdistancefromtheneareststream,clayandtreedensity,whichtogetherexplained9.24%of thevariationinbirdassemblagesandhadanAICcvalueof537.76(Table1,marginaltests). Similarly,forthetopographicset,q=3variableswereidentifiedassufficienttoexplainvaria- tionformodelingpurposes(S4Table);thatis,allthreevariables:elevation,slopeandwater- shed,weredeemedusefulhere,whichtogetherexplained8.93%andhadanAICcvalueof 539.78(Table1,marginaltests).Incontrast,forthespatialsetofvariables,onlyq=1variable wasdeemedrelevant—allsequentialtestsafterfittingthevariableofy2(i.e.,squaredlatitude) hadP-values>0.10(S4Table).Squaredlatitudeexplainedonly2.24%ofthevariationinbird assemblages,however.Toallowdirectcomparisonwiththeenvironmentalandtopographic sets,wedeterminedthebest3-variablemodelalsoforthespatialsetonthebasisofAICc, whichincludedthevariablesofy2,x2andx3.Thisexplained5.0%ofthevariationinthebird assemblagedata,withanAICcof541.02(Table1,marginaltests). Clearly,althoughnoneofthesesubsetsofvariablesexplainedmuchofthevariationinbird assemblages(each3-variablesethavingaR2<0.10),theenvironmentalvariablesexplained themost,followedbythetopographicvariables,andwiththeleastbeingassociatedwiththe purelyspatialvariables(Table1,marginaltests).Furthermore,thesequentialconditionaltests ofthesewholesets(Table1,sequentialtests)demonstratedthatthetopographicvariablessig- nificantlycontributedtoexplainvariationinbirdassemblages,overandabovethatexplained bytheenvironmentalvariables,toyieldacumulativeR2of0.1547(P=0.027),whereasthe additionofpurelyspatialvariablesdidnot(P=0.2176). Wheneachpredictorvariablewasconsideredindividually,significantrelationshipswith variationinbirdassemblageswerefoundforelevation,slope,clay,palmdensity,distanceto neareststream,andlatitudesquared(P<0.05),withtreedensity,watershedandlatitude showingmarginaleffects(P<0.10;Table2,marginaltests).However,afewstrong PLOSONE|DOI:10.1371/journal.pone.0171540 February22,2017 8/20 EnvironmentdrivesAmazonianunderstoreybirdassemblages Fig3.Ordinationsofbootstrapaveragesofbirdassemblages.Two-dimensionalmetricmulti-dimensionalscalingordinationsof100bootstrap sampleaveragesforeachgroupforeachofthemainfactors:Years(a),Watersheds(b);andEnvironmentalgroups(c),showingtheoverallmean(black dots)andtheempiricalapproximate95%confidenceregion,basedonzero-adjustedBray-Curtisdissimilaritiesofsquare-roottransformedabundancesof 98birdspecies. doi:10.1371/journal.pone.0171540.g003 correlationsamongvariableswereapparent,aswasalreadyevidencedbythePCA(seeS1 Fig).Specifically,elevationandclaycontenthadaPearsoncorrelationofr=0.94;hence thesetwovariablesshouldbeviewedasbeinginstrumentallyequivalent(i.e.,eachmayactas aproxyfortheother)inanymodelselectionprocedure.Thenext-highestcorrelationwas betweenclayanddistancefromtheneareststream(r=0.75),followedbythatbetweeneleva- tionanddistancefromtheneareststream(r=0.71);allothercorrelationswerelessthan 0.45. Forwardselectionandsequentialconditionaltestsacrossallpotentialpredictorvariables indicatedthataparsimoniousmodeltoexplainvariationinthebirdassemblagedataonthe basisofallpotentialpredictorvariableswouldbeachievedusingq=5variables(Table2, sequentialtests).Thebest5-variableAICcmodelincludedelevation,slope,treedensity,dis- tancetoneareststream,andlongitude(x).These5variablesexplained14.1%ofthevariation inthebirdassemblagesandthecorrespondingmodelhadanAICcvalueof538.47.Themodel wasvisualizedwithadbRDAordinationofthefittedvalues(Fig4),whosefirst2axescaptured 60.59%ofthefittedvariation,butonly8.55%ofthetotalvariation.Adirect,unconstrained andexhaustivesearchoverallpotentialpredictorvariablesonthebasisofAICcyieldeda modelwithonly3variables:elevation,slopeanddistancetoneareststream,whichexplained 10.16%ofthevariationandhadanAICcvalueof537.02,effectivelyequivalent(having ΔAICc<1.5)tothe5-variablemodelshowninFig4.Althoughthethreeenvironmental groupingscategorizedfromthePCAwerealsoclearlyidentifiableonthedbRDAplot,thevast majorityofthevariationinbirdassemblages(>85%)remainedunexplained(Table2,sequen- tialtests,Fig4). Table1. ResultsofDISTLManalysesamongsetsofpredictors. MARGINALTESTS SEQUENTIALTESTS set pseudo-F(4,68) P R2 AICc pseudo-F P cumulativeR2 environmental 2.307 0.0001 0.0924 537.76 2.307(4,68) 0.0001 0.0924 topographic 2.222 0.0001 0.0893 539.78 1.599(7,65) 0.0027 0.1547 spatial 1.199 0.1550 0.0502 541.02 1.149(10,62) 0.2176 0.1993 Proportionofvariation(R2)inbirdassemblagestructurethatisexplainedbyeachsetofvariableswhentakenalone(marginaltests),andthecumulative proportionexplainedbyfittingvariablessequentiallyusingforwardselection. Valuesinboldindicatesignificanteffects. doi:10.1371/journal.pone.0171540.t001 PLOSONE|DOI:10.1371/journal.pone.0171540 February22,2017 9/20 EnvironmentdrivesAmazonianunderstoreybirdassemblages Table2. ResultsofDISTLManalysesonallpredictors. MARGINALTESTS SEQUENTIALTESTS variable pseudo-F P R2 pseudo-F P cumulativeR2 dist.stream 2.954 0.0001 0.0405 2.954 0.0001 0.040 elevation 2.728 0.0003 0.0375 2.410 0.0009 0.073 slope 2.582 0.0004 0.0356 2.175 0.0031 0.102 tree 1.565 0.0597 0.0219 1.548 0.0612 0.122 x 1.170 0.2740 0.0164 1.484 0.0847 0.141 watershed 1.439 0.0978 0.0201 1.352 0.1453 0.159 silt 1.241 0.2130 0.0174 1.428 0.1136 0.177 clay 2.643 0.0002 0.0364 1.171 0.2760 0.192 y3 1.600 0.0513 0.0223 1.045 0.4090 0.205 x3 1.021 0.4361 0.0144 0.953 0.5128 0.218 palm 1.666 0.0360 0.0232 0.943 0.5276 0.230 x2 1.093 0.3556 0.0154 0.869 0.6221 0.241 y 1.588 0.0539 0.0222 0.773 0.7318 0.251 y2 1.607 0.0462 0.0224 0.817 0.6896 0.262 yx2 1.144 0.3058 0.0161 0.592 0.8972 0.269 yx 1.346 0.1452 0.0189 0.728 0.7853 0.279 y2x 1.251 0.2008 0.0176 1.162 0.2742 0.294 Proportionofvariation(R2)inbirdassemblagestructure(basedonadjustedBray-Curtisdissimilaritiesofsquare-roottransformedabundances)explained byeachpredictorvariablewhentakenalone(marginaltests)andthecumulativeproportionexplainedbyfittingvariablessequentiallyusingforward selection.xandyrefertolongitude,latitudeandtheirpolynomialsupto3rdorder,respectively. ValuesinboldindicateP<0.1. doi:10.1371/journal.pone.0171540.t002 Discussion Wedocumentedsignificantpatternsofspatio-temporalvariationinthediversityandassem- blagestructureofunderstoreyforestbirdsinthe10,000haDuckeForestReserve(DFR),cen- tralAmazoniaoverathree-yearperiod,from2012–2014.Atthescaleofthisstudy,spatial differencesinbirdassemblageswererelatedtoenvironmentaldifferencesamongplotsandto topographicvariables,suchasslopeandelevation,butwerenotrelatedtopurelyspatialvari- ables,suggestingthatdispersallimitationisnotoperatingstronglywithinthereserveforthe majorityofthesebirdsatdistancesof(cid:20)10km.Despitecleardifferencesinbirddiversityand assemblagestructurebetweeneasternandwesternwatersheds,wefoundnoevidencetosug- gestaneffectoftheridgelineperseonbirdassemblages.Nonetheless,thecentralridgemaybe actingasaboundarytolimitthedistributionofsomespecies.Thedifferencesinbirdassem- blagesbetweenwatershedsdemonstratedhowtopographicvariablesmayactalongsideenvi- ronmentalvariablestostructureAmazonianforestbirdassemblages.Ourfindingssuggest that,atbroaderscales,whatmayoftenbedetectedasspatialstructure(sensu[60])mightbe dueinparttobiogeographiclandscapefeaturesandassociatednaturalboundariesinstudiesof multivariateassemblages. Temporalpatterns Alphadiversitytendstoremainstableovertimeifenvironmentalcharacteristicsarealsostable [64].Highspatialturnoverofspeciesintropicalforestsisoftenexplainedbyfine-scalevaria- tioninenvironmentalconditionsaswellasstochasticprocessesyieldingnaturalfluctuations indensities.Iftemporalturnoveriscausedbyenvironmentalchanges,wewouldexpectshifts PLOSONE|DOI:10.1371/journal.pone.0171540 February22,2017 10/20
Description: