ebook img

Enumeration of $2$-Polymatroids on up to Seven Elements PDF

0.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Enumeration of $2$-Polymatroids on up to Seven Elements

ENUMERATION OF 2-POLYMATROIDS ON UP TO SEVEN ELEMENTS THOMASJ.SAVITSKY ABSTRACT. Atheoryofsingle-elementextensionsofintegerpolymatroidsanalogoustothatofmatroidsisdevel- 4 oped.Wepresentanalgorithmtogenerateacatalogof2-polymatroids,uptoisomorphism.Whenweimplemented 1 thisalgorithmonacomputer,obtainingall2-polymatroidsonatmostsevenelements,wediscoveredthesurprising 0 factthatthenumberof2-polymatroidsonsevenelementsfailstobeunimodalinrank. 2 l u J 1. INTRODUCTION 9 1 A k-polymatroid is a generalization of a matroid in which the rank of an element may be greater than 1 but cannot exceed k. Precise definitions are given in the next section. Polymatroids have applications in ] O mathematicsand computerscience. For example, Chapter11 of [6] employs2-polymatroidsin the studyof C matchingtheory.Polymatroids,andmoregenerally,submodularfunctions,ariseincombinatorialoptimization; seePartIVof[14]. Wetaketheperspectivethatk-polymatroidsareworthstudyingintheirownright. . h Although much work has been done with the use of computerson the enumerationof small matroids, to t a our knowledge, none has been done on enumeratingk-polymatroids, where k > 1. Some landmark results m inmatroidenumerationincludethefollowing: in1973,Blackburn,Crapo,andHiggs[2]publishedacatalog [ of all simple matroidson at most eightelements; in 2008, Mayhew and Royle [9] produceda catalog of all matroidsonuptonineelements;andin2012,Matsumoto,Moriyama,Imai,andBremner[7]enumeratedall 2 rank-4matroidsontenelements. v 6 Inthispaper,wedescribeoursuccessinadaptingtheapproachusedbyMayhewandRoyleto2-polymatroids. 0 Usingadesktopcomputer,weproducedacatalogofall2-polymatroids,uptoisomorphism,onatmostseven 0 elements.Weweresurprisedtodiscoverthatthenumberof2-polymatroidsonsevenelementsisnotunimodal 8 inrank. . 1 0 2. BACKGROUND 4 For an introduction to polymatroids, we recommend Chapter 12 of [13]. We begin our discussion with 1 : definitions. v i Definition1. LetS beafiniteset. Supposeρ: 2S →Nsatisfiesthefollowingthreeconditions: X (i) ifX,Y ⊆S,thenρ(X ∩Y)+ρ(X ∪Y)≤ρ(X)+ρ(Y)(submodular), r a (ii) ifX ⊆Y ⊆S,thenρ(X)≤ρ(Y)(monotone),and (iii) ρ(∅)=0(normalized). Then(ρ,S)istermedanintegerpolymatroidorsimplyapolymatroidwithrankfunctionρandgroundsetS. Definition2. Let k be a positive integer, andlet (ρ,S) be a polymatroid. Supposethatρ(x) ≤ k for every x∈S. Then(ρ,S)isak-polymatroid.Amatroidmaybedefinedasa1-polymatroid. Let(ρ,S)and(τ,T)bepolymatroids. Afunctionσ: S → T isanisomorphismofpolymatroidsifσ isa bijectionandif ρ(X) = τ(σ(X)) foreveryX ⊆ S. Theclosure operatorof a polymatroidmaybe defined exactlyasthatofamatroid. Definition3. Theclosureoperatorcl:2S →2S ofapolymatroid(ρ,S)isgivenby cl (X) = {x : ρ(X ∪x) = ρ(X)}forX ⊆ S. Thesetcl (X)iscalledtheclosureofX withrespecttoρ. ρ ρ Thesubscriptisomittedwhenρisclearfromcontext. DEPARTMENTOFMATHEMATICS,THEGEORGEWASHINGTONUNIVERSITY,WASHINGTON,DC20052 E-mail address:[email protected]. 2 ENUMERATIONOF2-POLYMATROIDSONUPTOSEVENELEMENTS Onecanshowthatρ(X)=ρ(cl(X))byinductionon|cl(X)−X|. Wewillfreelymakeuseofthisaswell asthefollowingpropertiesofclosureoperators.Theyarestatedherewithoutproof. Proposition4. Theclosureoperatorofapolymatroid(ρ,S)satisfiesthefollowingthreeproperties: (i) X ⊆cl(X)forallX ⊆S (increasing), (ii) ifX ⊆Y ⊆S,thencl(X)⊆cl(Y)(monotone),and (iii) cl(X)=cl(cl(X))forallX ⊆S (idempotent). Asubsetofthegroundsetthatismaximalwithrespecttorankiscalledaflat.Hereisthedefinitioninterms oftheclosureoperator. Definition5. Let(ρ,S)byapolymatroid. AsetX ⊆ S iscalledaflatofρifcl(X) = X. Thecollectionof flatsof(ρ,S)issymbolizedbyF(ρ,S). Intersectionsofflatsofmatroidsarethemselvesflats,andthesameistrueforpolymatroids. Proposition6. IfF andGareflatsofpolymatroid(ρ,S),thenF ∩Gisalsoaflat. Proof. Letx ∈S−(F ∩G). Eitherx ∈S−F orx ∈S−G. ByrelabelingF andGifnecessary,wemay assumex∈S−F. Bysubmodularity, ρ(F)+ρ((F ∩G)∪x)≥ρ(F ∪x)+ρ(F ∩G). Thisimpliesρ((F ∩G)∪x)−ρ(F ∩G) ≥ ρ(F ∪x)−ρ(F). Byassumption,ρ(F ∪x)−ρ(F) > 0,and hence,asneeded,ρ((F ∩G)∪x)−ρ(F ∩G)>0. (cid:3) Since the entire groundset of a polymatroid is a flat, we see that the collection of flats of a polymatroid formsalatticeunderset-inclusion. Thetheoryofsingle-elementextensionsofmatroidswasdevelopedbyCrapoin[3]. Weextendthistheory topolymatroidsinthenextsection,butfirstthematroidcaseisbrieflyreviewedhere. SeeSection7.2of[13] foradetailedexposition.Webeginwithacoupleofdefinitionsthatapplytopolymatroidsaswell. Definition7. Let(ρ,S)beapolymatroid,andletebeanelementnotinS. If(ρ¯,S∪e)isapolymatroidwith ρ¯(X)=ρ(X)forallX ⊆S,thenρ¯isasingle-elementextensionofρ. Definition8. Amodularcutofapolymatroid(ρ,S)isasubsetMofF(ρ,S)forwhich (i) ifF ∈M,G∈F(ρ,S),andF ⊆G,thenG∈M,and (ii) ifF,G∈Mandρ(F ∩G)+ρ(F ∪G)=ρ(F)+ρ(G),thenF ∩G∈M. The nexttwo results show thatsingle-elementextensionsof a matroidcan be placedin one-to-onecorre- spondencewithitsmodularcuts. Thiscorrespondenceunderliestheenumerationeffortsin[2]and[9]. Theorem9. Suppose(r,S)isamatroidwithsingle-elementextension(r¯,S∪e). Define M={F ∈F(r,S):r(F)=r¯(F ∪e)}. ThenMisamodularcut. Theorem10. Suppose(r,S)isamatroid,eisanelementnotinS,andM⊆F(r,S)isamodularcut.Define r¯: 2S∪e →Nasfollows: forX ⊆S,setr¯(X)=r(X)and r(X) if cl(X)∈M, r¯(X ∪e)= (r(X)+1 otherwise. Then(r¯,S∪e)isamatroidandasingle-elementextensionof(r,S). Ourfinaldefinitioninthissectionwillbeusedwhenwedescribetheflatsofsingle-elementextensions. Definition11. LetF andGbeflatsofapolymatroid(ρ,S). SupposethatF (GandthatforanyflatH with F ⊆H ⊆G,eitherH =F orH =G. ThenwesaythatGcoversF. ENUMERATIONOF2-POLYMATROIDSONUPTOSEVENELEMENTS 3 3. SINGLE-ELEMENTEXTENSIONSOF POLYMATROIDS Givenapolymatroid,ouraimistodescribeallofitssingle-elementextensions. Asinthematroidcasewe mayrestrictourattentiontoflatsoftheoriginalpolymatroid.Suppose(ρ¯,S∪e)isasingle-elementextension of(ρ,S). Thefollowingpropositionshowsthatifthevalueofρ¯(F ∪e)isknownforeveryflatF of(ρ,S), thenρ¯iscompletelydetermined. Proposition12. Suppose(ρ¯,S∪e)isasingle-elementextensionof(ρ,S). LetX ⊆ S,andletcl(X)bethe closureofX withrespecttoρ(notρ¯). Thenρ¯(X ∪e)=ρ¯(cl(X)∪e). Proof. SinceX ∪e⊆cl(X)∪e=clρ¯(X)∪e⊆clρ¯(X ∪e)andρ¯hasthesamevalueonthefirstandlastof thesesets,theresultfollows. (cid:3) Forasingle-elementextension(ρ¯,S∪e)of(ρ,S),letcbeρ¯(e)andletX ⊆S. Itfollowsthatρ¯(X∪e)≤ ρ(X)+c by the submodularityand normalizationof ρ¯. Therefore, we may partition the flats of (ρ,S) into classesM0,M1,...,McbytheruleF ∈Miifandonlyifρ¯(F∪e)=ρ(F)+i.(NotethatsomeMimaybe empty.)ByProposition12,knowledgeof(ρ,S)andthepartition(M0,M1,...,Mc)completelydetermines (ρ¯,S∪e). Ourgoalistodeveloppropertiesthatcharacterizesuchpartitions. Thefollowingdefinitionwillbe useful. Definition13. Let(ρ,S)beapolymatroid,andletX,Y ⊆S. DefinethemodulardefectofX andY,denoted δ(X,Y),tobeρ(X)+ρ(Y)−ρ(X ∪Y)−ρ(X ∩Y). Ifδ(X,Y)=0,thenX andY areamodularpairof sets. Now suppose (M0,M1,...,Mc) is a partition of F(ρ,S). Let e be an element not in S and define ρ¯: 2S∪e →Nasfollows: forX ⊆ S,setρ¯(X)= ρ(X)and,ifcl(X)∈ M ,thensetρ¯(X ∪e)= ρ(X)+i. i Furthermore,defineafunctionµ: 2S →Nbyµ(X)=iifcl(X)∈M . i Theorem14. Asdefinedabove,(ρ¯,S∪e)isapolymatroid,andhenceasingle-elementextensionof(ρ,S),if andonlyifthefollowingthreeconditionsholdforallflatsF,Gof(ρ,S): (I) µ(F ∩G)+µ(F ∪G)−δ(F,G)≤µ(F)+µ(G), (II) ifF ⊆G,thenρ(F)+µ(F)≤ρ(G)+µ(G),and (III) ifF ⊆G,thenµ(G)≤µ(F). Proof. Assume(ρ¯,S∪e)isapolymatroid,andletF,Gbeflatsof(ρ,S). Applyingthesubmodularityofρ¯to thepairofsetsF ∪eandG∪egives ρ¯((F ∪e)∩(G∪e))+ρ¯((F ∪e)∪(G∪e))≤ρ¯(F ∪e)+ρ¯(G∪e). Byourdefinitionofρ¯,therightsideoftheaboveinequalityequalsρ(F)+µ(F)+ρ(G)+µ(G).Theleftside equals ρ¯((F ∩G)∪e)+ρ¯((F ∪G)∪e)=ρ(F ∩G)+µ(F ∩G)+ρ(F ∪G)+µ(F ∪G) =µ(F ∩G)+µ(F ∪G)+ρ(F)+ρ(G)−δ(F,G). Weconcludethatµ(F ∩G)+µ(F ∪G)−δ(F,G)≤µ(F)+µ(G)andseethatcondition(I)issatisfied. Statement(II)isthemonotonepropertyofρ¯. Finally,toshowcondition(III),applythesubmodularityofρ¯tothepairofsetsF ∪eandG. Thisgivesthe firstofthefollowingequivalentinequalities: (1) ρ¯((F ∪e)∪G)+ρ¯((F ∪e)∩G)≤ρ¯(F ∪e)+ρ¯(G) (2) ρ¯(G∪e)+ρ¯(F)≤ρ¯(F ∪e)+ρ¯(G) (3) ρ¯(G∪e)−ρ¯(G)≤ρ¯(F ∪e)−ρ¯(F) (4) µ(G)≤µ(F). Nowassumethatconditions(I),(II),and(III)aresatisfied. Wemustverifythatρ¯satisfiesthethreeaxioms forapolymatroid.Itfollowsimmediatelyfromourdefinitionthatρ¯(∅)=0. Next, we checkmonotonicity. Assume thatX ⊆ Y ⊆ S. The definitionof ρ¯and the monotonicityof ρ implythatρ¯(X) = ρ(X) ≤ ρ(Y) = ρ¯(Y). Thuswealsogetρ¯(X) ≤ ρ¯(Y) ≤ ρ¯(Y ∪e). Itremainstocheck 4 ENUMERATIONOF2-POLYMATROIDSONUPTOSEVENELEMENTS thatρ¯(X ∪e)≤ρ¯(Y ∪e). Observe ρ¯(X ∪e)=ρ(X)+µ(X) =ρ(cl(X))+µ(cl(X)) ≤ρ(cl(Y))+µ(cl(Y)) (bycondition(II)) =ρ(Y)+µ(Y) =ρ¯(Y ∪e). Therefore,ρ¯ismonotoneonallsubsetsofS∪e. Sinceρ¯(X) = ρ(X)forX ⊆ S,tochecksubmodularityitsufficestoverifyitforthepairs(a)X ∪eand Y,and(b)X ∪eandY ∪e,withX,Y ⊆S. Forcase(a),wehave ρ¯((X ∪e)∩Y)+ρ¯((X ∪e)∪Y)=ρ¯(X ∩Y)+ρ¯((X ∪Y)∪e) =ρ(X ∩Y)+ρ(X ∪Y)+µ(cl(X ∪Y)) ≤ρ(X)+ρ(Y)+µ(cl(X ∪Y)) (bythesubmodularityofρ) ≤ρ(X)+ρ(Y)+µ(cl(X)) (bycondition(III)) =ρ¯(X ∪e)+ρ¯(Y). Forcase(b),wehave ρ¯(X ∪e)+ρ¯(Y ∪e)=ρ(cl(X))+µ(cl(X))+ρ(cl(Y))+µ(cl(Y)) ≥µ(cl(X)∩cl(Y))+µ(cl(X)∪cl(Y))−δ(cl(X),cl(Y))+ρ(cl(X))+ρ(cl(Y)) =µ(cl(X)∩cl(Y))+µ(cl(X)∪cl(Y))+ρ(cl(X)∪cl(Y))+ρ(cl(X)∩cl(Y)) =ρ¯((cl(X)∪cl(Y))∪e)+ρ¯((cl(X)∩cl(Y))∪e) ≥ρ¯(X ∪Y ∪e)+ρ¯((X ∩Y)∪e). Thefirst inequalityfollowsbycondition(I),and the last inequalityholdsbecause the monotonicityof ρ¯has alreadybeenestablished. (cid:3) NotethatTheorem14generalizesTheorems9and10forsingle-elementextensionsofmatroids. Alsonote that if the conditions of the theorem are satisfied, then M0 is a modular cut. Lastly, we point out that the theoremremainstrueiftheword“flats”isreplacedby“sets”initsstatement. Definition15. Apartition(M0,M1,...,Mc)offlatsofapolymatroid(ρ,S)thatsatisfiestheconditionsin Theorem14iscalledanextensiblepartition. Fortheremainderofthissection,assumethat(ρ,S)isapolymatroid,(M0,M1,...,Mc)isanextensible partition,and(ρ¯,S ∪e)isthesingle-elementextensiondefinedrightbeforeTheorem14. Ournextgoalisto describetheflatsof(ρ¯,S∪e). ClearlyifF ⊆ S isaflatof(ρ¯,S ∪e),thenF isalsoaflatof(ρ,S). We alsohavethefollowinghelpful fact. Proposition16. ForF ⊆S,ifF ∪eisaflatof(ρ¯,S∪e),thenF isaflatof(ρ,S). Proof. Observethatclρ(F)⊆clρ¯(F)⊆clρ¯(F ∪e)=F ∪e. (cid:3) Therefore,tofindtheflatsof(ρ¯,S∪e)weneedonlyconsidersetsoftheformF andF ∪e,whereF isa flatof(ρ,S). Thenextpropositionexplicitlydescribestheflatsof(ρ¯,S∪e). Proposition17. Let(ρ¯,S∪e)bethesingle-elementextensionof(ρ,S)correspondingtotheextensibleparti- tion(M0,M1,...,Mc). Theflatsof(ρ¯,S∪e)arethesets (1) F inM ,fori>0, i (2) F ∪e,forF ∈M0, (3) F ∪e,forF ∈M withi>0,whereF hasnocoverGwithρ(F)+µ(F)=ρ(G)+µ(G). i ENUMERATIONOF2-POLYMATROIDSONUPTOSEVENELEMENTS 5 Proof. Toreiterate,weneedonlylookatsetsoftheformF andF ∪e,whereF isaflatof(ρ,S). Itfollowsfromthedefinitionofρ¯thataflatF of(ρ,S)isaflatof(ρ¯,S∪e)ifandonlyifF 6∈M0. IfF ∈M0,thenF ∪eisaflatof(ρ¯,S∪e)since,fory ∈S−F,wehave ρ¯(F ∪{e,y})≥ρ(F ∪y)>ρ(F)=ρ¯(F ∪e). We claim that for F ∈ M with i > 0, the set F ∪e is a flat of (ρ¯,S ∪e) if and only if the inequality i in property (II) of Theorem 14 is strict for all covers G of F. Indeed, if G covers F and ρ(F)+µ(F) = ρ(G)+µ(G),thenF ∪eisnotaflatsince ρ¯(F ∪e)=ρ(F)+µ(F)=ρ(G)+µ(G)=ρ¯(G∪e). Nowassumestrictinequalityholdsinproperty(II)forallcoversofF. Ifx ∈ S−F,thenthereisacoverG ofF withF (G⊆cl (F ∪x),so ρ ρ¯(F ∪e)=ρ(F)+µ(F)<ρ(G)+µ(G)=ρ¯(G∪e)≤ρ¯(F ∪{e,x}). (cid:3) Notethatifµ(G)=µ(F),thenequalitycannotholdinproperty(II)ofTheorem14,sinceρ(G)>ρ(F). Theseresultsgeneralizethoseformatroidextension. We definethecollarofM toconsistofeveryF ∈ i M that is covered by some G ∈ M with j < i. In a matroid (r,S), if a flat G covers a flat F, then i j r(G)−r(F)=1. If(r¯,S∪e)isasingle-elementextensionandF ∈M1,thenF ∪eisaflatofr¯ifandonly ifF isnotinthecollarofM1. 4. GENERATINGA CATALOGOF SMALL2-POLYMATROIDS Nowwewillspecializetheresultsoftheprevioussectionto2-polymatroids. Suppose(ρ,S) isa 2-polymatroidwithcollectionofflatsF(S). SupposethatF(S) istheunionof three disjointsets, M0, M1, andM2, some of which may be empty. Let e be an elementnotin S. We define a functionρ¯: 2S∪e →Nasfollows. ForX ⊆S,defineρ¯(X)=ρ(X)and ρ¯(X ∪e)=ρ(X)+i where cl(X)∈M . i When computing the extensible partitions of a 2-polymatroid, we found it convenient to work with the followingverbosespecializationofTheorem14. Theorem18. Asdefined,(ρ¯,S ∪e)is a2-polymatroidextensionof(ρ,S)ifandonlyifthe followingseven conditionsaremet. (1) IfF ∈M2,G∈F(S),F ⊆G,andρ(G)−ρ(F)=1,thenG∈M1∪M2. Inotherwords,ifF ∈M2 iscoveredbyaflatGof(ρ,S)ofonerankhigher,thenGcannotbeinM0. (2) IfF,G∈M0and(F,G)isamodularpair,thenF ∩G∈M0aswell. (3) IfF,G∈M0andρ(F)+ρ(G)=ρ(F ∪G)+ρ(F ∩G)+1,thenF ∩G∈M0∪M1. (4) If F,G ∈ M1 and (F,G) is a modular pair, then either F ∩G ∈ M1 as well, or F ∩G ∈ M2 and cl(F ∪G)∈M0. (5) IfF ∈M0,G∈M1,and(F,G)isamodularpair,thenF ∩GcannotbeinM2. (6) ThesetM2isdown-closedinthelatticeF(ρ,S). (7) ThesetM0isup-closedinthelatticeF(ρ,S). SketchofProof. Condition(II)ofTheorem14specializestocondition(1)here,condition(I)toconditions(2) through(5),andcondition(III)toconditions(6)and(7). (cid:3) Theflatsof(ρ¯,S∪e)arethesets (1) F inM1∪M2, (2) F ∪e,forF ∈M0, (3) F ∪e,forF ∈M ,withi>0,where, i (a) F hasnocoverGinMi−1withρ(G)=ρ(F)+1,and (b) ifi=2,F hasnocoverGinM0withρ(G)=ρ(F)+2. 6 ENUMERATIONOF2-POLYMATROIDSONUPTOSEVENELEMENTS Forexample,let(ρ,{a,b})bethe2-polymatroidconsistingoftwolinesplacedfreelyinaplane.Tobespe- cific,defineρ(∅)=0,ρ({a})=ρ({b})=2,andρ({a,b})=3. Thesingle-elementextensioncorresponding totheextensiblepartition (M0,M1,M2)=({{a,b}},{{a},{b}},{∅}) isthe2-polymatroidconsistingofthreelinesplacedfreelyinaplane. Usingtheresultsofthissection,weendeavoredtocatalogallsmall2-polymatroidsonacomputerbymeans ofacanonicaldeletionalgorithm. Definition19. SupposeX isacollectionofcombinatorialobjectswithgroundset{1,...,n}andanotionof isomorphism.AfunctionC: X →X isacanonicallabelingfunctionifthefollowingholdforallX,Y ∈X: (i) X isisomorphictoC(X),and (ii) C(X)=C(Y)ifandonlyifX isisomorphictoY. Inthiscase,C(X)iscalledthecanonicalrepresentativeofX. BrendanMcKay’snautyprogramefficientlycomputescanonicallylabelingsofcoloredgraphs. Inorder tomakeuseofit,weconvertpolymatroidsintographsusingthefollowingconstruction. Definition20. Givenanintegerpolymatroid(ρ,S), defineacolored,bipartitegraphwith bipartitionS and F(ρ,S). Anedgebetweene ∈ S andF ∈ F(ρ,S)exists ifandonlyife ∈ F. ColorF ∈ F(ρ,S)withits rank,ρ(F). Coloreache∈S with−1. Calltheresultinggraphtheflatgraph1oftheintegerpolymatroid. NotethatifX ⊆SandifF isthesmallestflatcontainingX,thenρ(X)=ρ(F). Intermsoftheflatgraph, therankofasetX ⊆ S equalstheleastcoloramongstthoseverticesadjacenttoeveryelementofX. Using thisobservation,itiseasytoprovethenextproposition. Proposition21. Two integer polymatroidsare isomorphic if and only if their flat graphs are isomorphic as coloredgraphs.(Byanisomorphismofacoloredgraph,wemeanagraphisomorphismthatmapseachvertex toanotherofthesamecolor.) Therefore,inordertocanonicallylabela2-polymatroid,itsufficestoconsideritsflatgraph. Thennauty isusedtocomputeacanonicallabelingoftheflatgraph.Whenrestrictedtothegroundsetofthepolymatroid, thisgivesacanonicallabelingofthepolymatroid.Foradescriptionofthealgorithmsusedbynautysee[10] and[11]. Onemayalsofindtheexpositionin[5]helpful. NowwehaveallthetoolsneededtoadaptAlgorithm1of[9]to2-polymatroids. Supposewearegivena setX thatconsistsofpreciselyonerepresentativeofeachisomorphismclassof2-polymatroidsontheground n set{1,...,n}. Thefollowingalgorithmproducesitscounterpart,Xn+1,fortheset{1,...,n+1}. Algorithm1Isomorph-freegenerationof2-polymatroids foreachρ∈X do n SetYρ ←∅,thecollectionofextensionsofρthatshouldappearinXn+1. foreachextensiblepartition(M0,M1,M2)ofρdo Letρ¯betheextensionofρassociatedwiththispartition. Canonicallylabelρ¯. Setρ′ ←ρ¯\(n+1),thecanonicaldeletion. Canonicallylabelρ′. ifρ=ρ′andρ¯6∈Y then ρ SetY ←Y ∪ρ¯. ρ ρ endif endfor SetXn+1 ←Xn+1∪Yρ. endfor return X n+1 1Inourimplementation,wefounditprudenttoinsertanisolatedvertexofrankrifnoflatsofrankrexisted,forr<ρ(S).Thismade iteasiertoworkwiththelabelingsusedbynauty. ENUMERATIONOF2-POLYMATROIDSONUPTOSEVENELEMENTS 7 Afewcommentsareinorder. Notethatthetestρ = ρ′ isforequality,notisomorphism. Inourimplemen- tation,thecollectionsY arebinarytrees,ratherthanmerelysets,inordertospeedupthesearchρ∈Y . ρ ρ The task of finding all extensible partitions for a polymatroidρ is relatively straightforward, but tedious. First,acandidateforamodularcutM0isfound.SinceM0isanup-closedset,itsufficestokeeptrackofthe minimalflatsinM0. Thesearefoundasindependentsetsofagraphwithvertexsetequaltotheflatsofρ. If oneflatiscontainedinanother,anedgeisplacedbetweenthetwo. Condition(2)ofTheorem18isthenused tonarrowthesearch. Anedgeisalsoplacedbetweenanytwoflatsthatformamodularpair. Theindependent setsinthisgrapharetheminimalmembersofourcandidatesforM0.GivenanacceptablecandidateforM0,a morecomplicatedprocedureisusedtofindallpossiblecandidatesforM1. Theremainingflatsareobviously assigned to M2. Unfortunately, the resulting partition must be checked to see if it satisfies conditions (1) through(5),sincesomeofthesemayfailfornon-minimalmembersofM0orM1. Finally, note that each iteration of the outermostfor loop may be run in parallel since extensions of two differentmembersofX areneverdirectlycomparedtoeachother. n 5. IMPLEMENTATIONAND RESULTS WeimplementedthisalgorithmintheCprogramminglanguage.Inordertodeterminethecoverrelationsfor flats,weemployedtheATLASlibrary[16]tomultiplytheadjacencymatricesofgraphs.Weusedtheigraph library [4] to find independent sets in graphs. A computer with a single 6-core Intel i7-3930K processor clockedat 3.20GHzrunning64-bitUbuntuLinuxexecutedthe resulting program. After approximatelyfour days,acatalogofall2-polymatroidsonsevenorfewerelementswasgenerated. Thefollowingtableliststhenumberof2-polymatroids,uptoisomorphism,onthegroundset{1,...,n}, byrank. Thenumberofunlabeled2-polymatroids rank\n 0 1 2 3 4 5 6 7 0 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 2 1 4 10 21 39 68 112 3 2 12 49 172 573 1890 4 1 10 78 584 5236 72205 5 3 49 778 18033 971573 6 1 21 584 46661 149636721 7 4 172 18033 19498369 8 1 39 5236 149636721 9 5 573 971573 10 1 68 72205 11 6 1890 12 1 112 13 7 14 1 total 1 3 10 40 228 2380 94495 320863387 Thefollowingpropositionisthekeytoproducingtheanalogoustableforlabeled2-polymatroids. Proposition22. Theautomorphismsofanintegerpolymatroid(ρ,S)areinone-to-onecorrespondencewith theautomorphismsofitsflatgraph. SketchofProof. Thisisnothardtoshow.Itfollows,forexample,fromtheremarksinSection1of[12],which employsthelanguageofhypergraphs. (cid:3) Sincenautycaneasilycomputetheautomorphismgroupsoftheflatgraphsofthesepolymatroids,apply- ingthe Orbit-StabilizerTheoremgivesa countof the numberoflabeled 2-polymatroidson 7 elements. The followingtableliststhenumberoflabeled2-polymatroids,onthegroundset{1,...,n},byrank. 8 ENUMERATIONOF2-POLYMATROIDSONUPTOSEVENELEMENTS Thenumberoflabeled2-polymatroids rank\n 0 1 2 3 4 5 6 7 0 1 1 1 1 1 1 1 1 1 1 3 7 15 31 63 127 2 1 6 29 135 642 3199 16879 3 3 41 477 5957 87477 1604768 4 1 29 784 27375 1554077 189213842 5 7 477 41695 7109189 3559635761 6 1 135 27375 21937982 733133160992 7 15 5957 7109189 86322358307 8 1 642 1554077 733133160992 9 31 87477 3559635761 10 1 3199 189213842 11 63 1604768 12 1 16879 13 127 14 1 total 1 3 14 115 2040 109707 39445994 1560089623047 The symmetry of the columns in the above tables is explained by the following notion of duality for k- polymatroids. Definition23. Givenapolymatroid(ρ,S),definethek-dualρ∗: 2S →Nby ∗ ρ (X)=k|X|+ρ(S−X)−ρ(S). Itiseasilyseenthatρ∗ isitselfak-polymatroidandthattheoperationofk-dualityisaninvolutiononthe setofk-polymatroidsonafixedgroundsetwhichrespectsisomorphism. (Infact,itisshownin[17]tobethe theuniquesuchinvolutionthatinterchangesdeletionandcontraction.) Welshconjecturedthatthenumberofmatroidsonafixedsetisunimodalinrankin[15]. Thecounterpartof thisconjecturefork-polymatroidsisfalse. Thetableaboveshowsthatitfailsfor2-polymatroidson7elements. Sincethenumberoflabeled2-polymatroidsonsevenelementsisnearlyafactorof7!morethanthenum- ber of unlabeled ones, it seems reasonable to conjecture that, asymptotically, almost all 2-polymatroidsare asymmetric. Theproofin [8]thatalmostallmatroidsarelooplesscarriesoverwithoutchangeto 2-polymatroids. Our catalogsuggeststhatastrongerpropertyholdsfor2-polymatroids. Weconjecturethat,asymptotically,almost all2-polymatroidscontainnoelementsofranklessthan2. Hereistheevidencefromourcatalog:thenumber ofunlabeled2-polymatroidson{1,...,n}withnoelementsofranklessthan2. n 1 2 3 4 5 6 7 count 1 2 8 51 696 49121 304541846 Thistableshouldbecomparedtothefirsttableinthissection. 6. A CONFIRMATION Considerthatthelabeledsingle-elementextensionsofak-polymatroidareinfactsolutionstoacertaininte- gerprogrammingproblem.Whenallsubsetsofthegroundsetaretakenasvariables,inequalitiesguaranteeing theaxiomsofak-polymatroidareeasilywritten. Tobeconcrete,letρ: S → Nbeak-polymatroidandlete beanelementnotinS. Regardρ¯(X)asavariableforeachX ⊆ S ∪e. Fixρ¯(A) = ρ(A)forA ⊆ S. Also fixρ¯(S∪e)=ρ(S)+c,wherecisanaturalnumbernogreaterthank. Nownonnegativeintegersolutionsto thesystemofinequalitiesbelowareinone-to-onecorrespondencewithlabeledsingle-elementextensionsofρ whichincreasetherankofρbyc. ENUMERATIONOF2-POLYMATROIDSONUPTOSEVENELEMENTS 9 ρ¯(A)+ρ¯(A∪f ∪g)≤ρ¯(A∪f)+ρ¯(A∪g) forA⊆S∪eandf,g ∈(S∪e)−A; 0≤ρ¯(A∪f)−ρ¯(A)≤k forA⊆S∪eandf ∈(S∪e)−A; and ρ¯(A)≤k|A| forA⊆S∪e. Here,weareusingaconditionequivalenttosubmodularity;seeTheorem44.2of[14]foraproofofequiv- alence. The open-sourceoptimization software SCIP [1] is able to countthe number of integer solutions to suchinequalities. UsingSCIPwe verifiedthenumbersoflabeled2-polymatroidsgivenearlier. Notethat, in theversionofSCIPweusedinApril2013,itwasnecessarytoturnoffallpre-solvingoptionsinordertoob- tainaccurateresults. Thisprocesstookapproximately13weeksusingthecomputerdescribedintheprevious section. 7. ACKNOWLEDGEMENTS Theauthorwouldliketothanktheanonymousrefereeforcarefullyreadingthispaperandprovidingsug- gestionswhichimproveditsexposition. REFERENCES [1] TobiasAchterberg.Scip:Solvingconstraintintegerprograms.MathematicalProgrammingComputation,1(1):1–41,July2009. [2] JohnE.Blackburn, HenryH.Crapo, andDenis A.Higgs. Acatalogue ofcombinatorial geometries. Math. Comp., 27:155–166; addendum,ibid.27(1973),no.121,loosemicrofichesuppl.A12–G12,1973. [3] HenryH.Crapo.Single-elementextensionsofmatroids.J.Res.Nat.Bur.StandardsSect.B,69B:55–65,1965. [4] Ga´borCsa´rdiandTama´sNepusz.Theigraphsoftwarepackageforcomplexnetworkresearch.InterJournalComplexSystems,page 1695,2006. [5] StephenG.HartkeandA.J.Radcliffe.McKay’scanonicalgraphlabelingalgorithm.InCommunicatingMathematics,volume479 ofContemp.Math.,pages99–111.Amer.Math.Soc.,Providence,RI,2009. [6] La´szlo´Lova´szandMichaelD.Plummer.MatchingTheory.AMSChelseaPublishing,Providence,RI,2009.Correctedreprintofthe 1986original. [7] YoshitakeMatsumoto,SonokoMoriyama,HiroshiImai,andDavidBremner.Matroidenumerationforincidencegeometry.Discrete Comput.Geom.,47(1):17–43,2012. [8] DillonMayhew,MikeNewman,DominicWelsh,andGeoffWhittle.Ontheasymptoticproportionofconnectedmatroids.European J.Combin.,32(6):882–890,2011. [9] DillonMayhewandGordonF.Royle.Matroidswithnineelements.J.Combin.TheorySer.B,98(2):415–431,2008. [10] BrendanD.McKay.Practicalgraphisomorphism.InProceedingsoftheTenthManitobaConferenceonNumericalMathematicsand Computing,Vol.I(Winnipeg,Man.,1980),volume30,pages45–87,1981. [11] BrendanD.McKayandAdolfoPiperno.Practicalgraphisomorphism,II.J.SymbolicComput.,60:94–112,2014. [12] GaryL.Miller.Isomorphismofgraphswhicharepairwisek-separable.Inform.andControl,56(1-2):21–33,1983. [13] JamesOxley.MatroidTheory,volume21ofOxfordGraduateTextsinMathematics.OxfordUniversityPress,Oxford,secondedition, 2011. [14] AlexanderSchrijver.Combinatorial optimization.Polyhedraandefficiency. Vol.B,volume24ofAlgorithmsandCombinatorics. Springer-Verlag,Berlin,2003.Matroids,trees,stablesets,Chapters39–69. [15] D.J.A.Welsh.Combinatorialproblemsinmatroidtheory.InCombinatorialMathematicsanditsApplications(Proc.Conf.,Oxford, 1969),pages291–306.AcademicPress,London,1971. [16] R.ClintWhaleyandAntoinePetitet.MinimizingdevelopmentandmaintenancecostsinsupportingpersistentlyoptimizedBLAS. Software:PracticeandExperience,35(2):101–121,February2005. [17] GeoffWhittle.Dualityinpolymatroidsandsetfunctions.Combin.Probab.Comput.,1(3):275–280,1992.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.