ENUMERATION OF 2-POLYMATROIDS ON UP TO SEVEN ELEMENTS THOMASJ.SAVITSKY ABSTRACT. Atheoryofsingle-elementextensionsofintegerpolymatroidsanalogoustothatofmatroidsisdevel- 4 oped.Wepresentanalgorithmtogenerateacatalogof2-polymatroids,uptoisomorphism.Whenweimplemented 1 thisalgorithmonacomputer,obtainingall2-polymatroidsonatmostsevenelements,wediscoveredthesurprising 0 factthatthenumberof2-polymatroidsonsevenelementsfailstobeunimodalinrank. 2 l u J 1. INTRODUCTION 9 1 A k-polymatroid is a generalization of a matroid in which the rank of an element may be greater than 1 but cannot exceed k. Precise definitions are given in the next section. Polymatroids have applications in ] O mathematicsand computerscience. For example, Chapter11 of [6] employs2-polymatroidsin the studyof C matchingtheory.Polymatroids,andmoregenerally,submodularfunctions,ariseincombinatorialoptimization; seePartIVof[14]. Wetaketheperspectivethatk-polymatroidsareworthstudyingintheirownright. . h Although much work has been done with the use of computerson the enumerationof small matroids, to t a our knowledge, none has been done on enumeratingk-polymatroids, where k > 1. Some landmark results m inmatroidenumerationincludethefollowing: in1973,Blackburn,Crapo,andHiggs[2]publishedacatalog [ of all simple matroidson at most eightelements; in 2008, Mayhew and Royle [9] produceda catalog of all matroidsonuptonineelements;andin2012,Matsumoto,Moriyama,Imai,andBremner[7]enumeratedall 2 rank-4matroidsontenelements. v 6 Inthispaper,wedescribeoursuccessinadaptingtheapproachusedbyMayhewandRoyleto2-polymatroids. 0 Usingadesktopcomputer,weproducedacatalogofall2-polymatroids,uptoisomorphism,onatmostseven 0 elements.Weweresurprisedtodiscoverthatthenumberof2-polymatroidsonsevenelementsisnotunimodal 8 inrank. . 1 0 2. BACKGROUND 4 For an introduction to polymatroids, we recommend Chapter 12 of [13]. We begin our discussion with 1 : definitions. v i Definition1. LetS beafiniteset. Supposeρ: 2S →Nsatisfiesthefollowingthreeconditions: X (i) ifX,Y ⊆S,thenρ(X ∩Y)+ρ(X ∪Y)≤ρ(X)+ρ(Y)(submodular), r a (ii) ifX ⊆Y ⊆S,thenρ(X)≤ρ(Y)(monotone),and (iii) ρ(∅)=0(normalized). Then(ρ,S)istermedanintegerpolymatroidorsimplyapolymatroidwithrankfunctionρandgroundsetS. Definition2. Let k be a positive integer, andlet (ρ,S) be a polymatroid. Supposethatρ(x) ≤ k for every x∈S. Then(ρ,S)isak-polymatroid.Amatroidmaybedefinedasa1-polymatroid. Let(ρ,S)and(τ,T)bepolymatroids. Afunctionσ: S → T isanisomorphismofpolymatroidsifσ isa bijectionandif ρ(X) = τ(σ(X)) foreveryX ⊆ S. Theclosure operatorof a polymatroidmaybe defined exactlyasthatofamatroid. Definition3. Theclosureoperatorcl:2S →2S ofapolymatroid(ρ,S)isgivenby cl (X) = {x : ρ(X ∪x) = ρ(X)}forX ⊆ S. Thesetcl (X)iscalledtheclosureofX withrespecttoρ. ρ ρ Thesubscriptisomittedwhenρisclearfromcontext. DEPARTMENTOFMATHEMATICS,THEGEORGEWASHINGTONUNIVERSITY,WASHINGTON,DC20052 E-mail address:[email protected]. 2 ENUMERATIONOF2-POLYMATROIDSONUPTOSEVENELEMENTS Onecanshowthatρ(X)=ρ(cl(X))byinductionon|cl(X)−X|. Wewillfreelymakeuseofthisaswell asthefollowingpropertiesofclosureoperators.Theyarestatedherewithoutproof. Proposition4. Theclosureoperatorofapolymatroid(ρ,S)satisfiesthefollowingthreeproperties: (i) X ⊆cl(X)forallX ⊆S (increasing), (ii) ifX ⊆Y ⊆S,thencl(X)⊆cl(Y)(monotone),and (iii) cl(X)=cl(cl(X))forallX ⊆S (idempotent). Asubsetofthegroundsetthatismaximalwithrespecttorankiscalledaflat.Hereisthedefinitioninterms oftheclosureoperator. Definition5. Let(ρ,S)byapolymatroid. AsetX ⊆ S iscalledaflatofρifcl(X) = X. Thecollectionof flatsof(ρ,S)issymbolizedbyF(ρ,S). Intersectionsofflatsofmatroidsarethemselvesflats,andthesameistrueforpolymatroids. Proposition6. IfF andGareflatsofpolymatroid(ρ,S),thenF ∩Gisalsoaflat. Proof. Letx ∈S−(F ∩G). Eitherx ∈S−F orx ∈S−G. ByrelabelingF andGifnecessary,wemay assumex∈S−F. Bysubmodularity, ρ(F)+ρ((F ∩G)∪x)≥ρ(F ∪x)+ρ(F ∩G). Thisimpliesρ((F ∩G)∪x)−ρ(F ∩G) ≥ ρ(F ∪x)−ρ(F). Byassumption,ρ(F ∪x)−ρ(F) > 0,and hence,asneeded,ρ((F ∩G)∪x)−ρ(F ∩G)>0. (cid:3) Since the entire groundset of a polymatroid is a flat, we see that the collection of flats of a polymatroid formsalatticeunderset-inclusion. Thetheoryofsingle-elementextensionsofmatroidswasdevelopedbyCrapoin[3]. Weextendthistheory topolymatroidsinthenextsection,butfirstthematroidcaseisbrieflyreviewedhere. SeeSection7.2of[13] foradetailedexposition.Webeginwithacoupleofdefinitionsthatapplytopolymatroidsaswell. Definition7. Let(ρ,S)beapolymatroid,andletebeanelementnotinS. If(ρ¯,S∪e)isapolymatroidwith ρ¯(X)=ρ(X)forallX ⊆S,thenρ¯isasingle-elementextensionofρ. Definition8. Amodularcutofapolymatroid(ρ,S)isasubsetMofF(ρ,S)forwhich (i) ifF ∈M,G∈F(ρ,S),andF ⊆G,thenG∈M,and (ii) ifF,G∈Mandρ(F ∩G)+ρ(F ∪G)=ρ(F)+ρ(G),thenF ∩G∈M. The nexttwo results show thatsingle-elementextensionsof a matroidcan be placedin one-to-onecorre- spondencewithitsmodularcuts. Thiscorrespondenceunderliestheenumerationeffortsin[2]and[9]. Theorem9. Suppose(r,S)isamatroidwithsingle-elementextension(r¯,S∪e). Define M={F ∈F(r,S):r(F)=r¯(F ∪e)}. ThenMisamodularcut. Theorem10. Suppose(r,S)isamatroid,eisanelementnotinS,andM⊆F(r,S)isamodularcut.Define r¯: 2S∪e →Nasfollows: forX ⊆S,setr¯(X)=r(X)and r(X) if cl(X)∈M, r¯(X ∪e)= (r(X)+1 otherwise. Then(r¯,S∪e)isamatroidandasingle-elementextensionof(r,S). Ourfinaldefinitioninthissectionwillbeusedwhenwedescribetheflatsofsingle-elementextensions. Definition11. LetF andGbeflatsofapolymatroid(ρ,S). SupposethatF (GandthatforanyflatH with F ⊆H ⊆G,eitherH =F orH =G. ThenwesaythatGcoversF. ENUMERATIONOF2-POLYMATROIDSONUPTOSEVENELEMENTS 3 3. SINGLE-ELEMENTEXTENSIONSOF POLYMATROIDS Givenapolymatroid,ouraimistodescribeallofitssingle-elementextensions. Asinthematroidcasewe mayrestrictourattentiontoflatsoftheoriginalpolymatroid.Suppose(ρ¯,S∪e)isasingle-elementextension of(ρ,S). Thefollowingpropositionshowsthatifthevalueofρ¯(F ∪e)isknownforeveryflatF of(ρ,S), thenρ¯iscompletelydetermined. Proposition12. Suppose(ρ¯,S∪e)isasingle-elementextensionof(ρ,S). LetX ⊆ S,andletcl(X)bethe closureofX withrespecttoρ(notρ¯). Thenρ¯(X ∪e)=ρ¯(cl(X)∪e). Proof. SinceX ∪e⊆cl(X)∪e=clρ¯(X)∪e⊆clρ¯(X ∪e)andρ¯hasthesamevalueonthefirstandlastof thesesets,theresultfollows. (cid:3) Forasingle-elementextension(ρ¯,S∪e)of(ρ,S),letcbeρ¯(e)andletX ⊆S. Itfollowsthatρ¯(X∪e)≤ ρ(X)+c by the submodularityand normalizationof ρ¯. Therefore, we may partition the flats of (ρ,S) into classesM0,M1,...,McbytheruleF ∈Miifandonlyifρ¯(F∪e)=ρ(F)+i.(NotethatsomeMimaybe empty.)ByProposition12,knowledgeof(ρ,S)andthepartition(M0,M1,...,Mc)completelydetermines (ρ¯,S∪e). Ourgoalistodeveloppropertiesthatcharacterizesuchpartitions. Thefollowingdefinitionwillbe useful. Definition13. Let(ρ,S)beapolymatroid,andletX,Y ⊆S. DefinethemodulardefectofX andY,denoted δ(X,Y),tobeρ(X)+ρ(Y)−ρ(X ∪Y)−ρ(X ∩Y). Ifδ(X,Y)=0,thenX andY areamodularpairof sets. Now suppose (M0,M1,...,Mc) is a partition of F(ρ,S). Let e be an element not in S and define ρ¯: 2S∪e →Nasfollows: forX ⊆ S,setρ¯(X)= ρ(X)and,ifcl(X)∈ M ,thensetρ¯(X ∪e)= ρ(X)+i. i Furthermore,defineafunctionµ: 2S →Nbyµ(X)=iifcl(X)∈M . i Theorem14. Asdefinedabove,(ρ¯,S∪e)isapolymatroid,andhenceasingle-elementextensionof(ρ,S),if andonlyifthefollowingthreeconditionsholdforallflatsF,Gof(ρ,S): (I) µ(F ∩G)+µ(F ∪G)−δ(F,G)≤µ(F)+µ(G), (II) ifF ⊆G,thenρ(F)+µ(F)≤ρ(G)+µ(G),and (III) ifF ⊆G,thenµ(G)≤µ(F). Proof. Assume(ρ¯,S∪e)isapolymatroid,andletF,Gbeflatsof(ρ,S). Applyingthesubmodularityofρ¯to thepairofsetsF ∪eandG∪egives ρ¯((F ∪e)∩(G∪e))+ρ¯((F ∪e)∪(G∪e))≤ρ¯(F ∪e)+ρ¯(G∪e). Byourdefinitionofρ¯,therightsideoftheaboveinequalityequalsρ(F)+µ(F)+ρ(G)+µ(G).Theleftside equals ρ¯((F ∩G)∪e)+ρ¯((F ∪G)∪e)=ρ(F ∩G)+µ(F ∩G)+ρ(F ∪G)+µ(F ∪G) =µ(F ∩G)+µ(F ∪G)+ρ(F)+ρ(G)−δ(F,G). Weconcludethatµ(F ∩G)+µ(F ∪G)−δ(F,G)≤µ(F)+µ(G)andseethatcondition(I)issatisfied. Statement(II)isthemonotonepropertyofρ¯. Finally,toshowcondition(III),applythesubmodularityofρ¯tothepairofsetsF ∪eandG. Thisgivesthe firstofthefollowingequivalentinequalities: (1) ρ¯((F ∪e)∪G)+ρ¯((F ∪e)∩G)≤ρ¯(F ∪e)+ρ¯(G) (2) ρ¯(G∪e)+ρ¯(F)≤ρ¯(F ∪e)+ρ¯(G) (3) ρ¯(G∪e)−ρ¯(G)≤ρ¯(F ∪e)−ρ¯(F) (4) µ(G)≤µ(F). Nowassumethatconditions(I),(II),and(III)aresatisfied. Wemustverifythatρ¯satisfiesthethreeaxioms forapolymatroid.Itfollowsimmediatelyfromourdefinitionthatρ¯(∅)=0. Next, we checkmonotonicity. Assume thatX ⊆ Y ⊆ S. The definitionof ρ¯and the monotonicityof ρ implythatρ¯(X) = ρ(X) ≤ ρ(Y) = ρ¯(Y). Thuswealsogetρ¯(X) ≤ ρ¯(Y) ≤ ρ¯(Y ∪e). Itremainstocheck 4 ENUMERATIONOF2-POLYMATROIDSONUPTOSEVENELEMENTS thatρ¯(X ∪e)≤ρ¯(Y ∪e). Observe ρ¯(X ∪e)=ρ(X)+µ(X) =ρ(cl(X))+µ(cl(X)) ≤ρ(cl(Y))+µ(cl(Y)) (bycondition(II)) =ρ(Y)+µ(Y) =ρ¯(Y ∪e). Therefore,ρ¯ismonotoneonallsubsetsofS∪e. Sinceρ¯(X) = ρ(X)forX ⊆ S,tochecksubmodularityitsufficestoverifyitforthepairs(a)X ∪eand Y,and(b)X ∪eandY ∪e,withX,Y ⊆S. Forcase(a),wehave ρ¯((X ∪e)∩Y)+ρ¯((X ∪e)∪Y)=ρ¯(X ∩Y)+ρ¯((X ∪Y)∪e) =ρ(X ∩Y)+ρ(X ∪Y)+µ(cl(X ∪Y)) ≤ρ(X)+ρ(Y)+µ(cl(X ∪Y)) (bythesubmodularityofρ) ≤ρ(X)+ρ(Y)+µ(cl(X)) (bycondition(III)) =ρ¯(X ∪e)+ρ¯(Y). Forcase(b),wehave ρ¯(X ∪e)+ρ¯(Y ∪e)=ρ(cl(X))+µ(cl(X))+ρ(cl(Y))+µ(cl(Y)) ≥µ(cl(X)∩cl(Y))+µ(cl(X)∪cl(Y))−δ(cl(X),cl(Y))+ρ(cl(X))+ρ(cl(Y)) =µ(cl(X)∩cl(Y))+µ(cl(X)∪cl(Y))+ρ(cl(X)∪cl(Y))+ρ(cl(X)∩cl(Y)) =ρ¯((cl(X)∪cl(Y))∪e)+ρ¯((cl(X)∩cl(Y))∪e) ≥ρ¯(X ∪Y ∪e)+ρ¯((X ∩Y)∪e). Thefirst inequalityfollowsbycondition(I),and the last inequalityholdsbecause the monotonicityof ρ¯has alreadybeenestablished. (cid:3) NotethatTheorem14generalizesTheorems9and10forsingle-elementextensionsofmatroids. Alsonote that if the conditions of the theorem are satisfied, then M0 is a modular cut. Lastly, we point out that the theoremremainstrueiftheword“flats”isreplacedby“sets”initsstatement. Definition15. Apartition(M0,M1,...,Mc)offlatsofapolymatroid(ρ,S)thatsatisfiestheconditionsin Theorem14iscalledanextensiblepartition. Fortheremainderofthissection,assumethat(ρ,S)isapolymatroid,(M0,M1,...,Mc)isanextensible partition,and(ρ¯,S ∪e)isthesingle-elementextensiondefinedrightbeforeTheorem14. Ournextgoalisto describetheflatsof(ρ¯,S∪e). ClearlyifF ⊆ S isaflatof(ρ¯,S ∪e),thenF isalsoaflatof(ρ,S). We alsohavethefollowinghelpful fact. Proposition16. ForF ⊆S,ifF ∪eisaflatof(ρ¯,S∪e),thenF isaflatof(ρ,S). Proof. Observethatclρ(F)⊆clρ¯(F)⊆clρ¯(F ∪e)=F ∪e. (cid:3) Therefore,tofindtheflatsof(ρ¯,S∪e)weneedonlyconsidersetsoftheformF andF ∪e,whereF isa flatof(ρ,S). Thenextpropositionexplicitlydescribestheflatsof(ρ¯,S∪e). Proposition17. Let(ρ¯,S∪e)bethesingle-elementextensionof(ρ,S)correspondingtotheextensibleparti- tion(M0,M1,...,Mc). Theflatsof(ρ¯,S∪e)arethesets (1) F inM ,fori>0, i (2) F ∪e,forF ∈M0, (3) F ∪e,forF ∈M withi>0,whereF hasnocoverGwithρ(F)+µ(F)=ρ(G)+µ(G). i ENUMERATIONOF2-POLYMATROIDSONUPTOSEVENELEMENTS 5 Proof. Toreiterate,weneedonlylookatsetsoftheformF andF ∪e,whereF isaflatof(ρ,S). Itfollowsfromthedefinitionofρ¯thataflatF of(ρ,S)isaflatof(ρ¯,S∪e)ifandonlyifF 6∈M0. IfF ∈M0,thenF ∪eisaflatof(ρ¯,S∪e)since,fory ∈S−F,wehave ρ¯(F ∪{e,y})≥ρ(F ∪y)>ρ(F)=ρ¯(F ∪e). We claim that for F ∈ M with i > 0, the set F ∪e is a flat of (ρ¯,S ∪e) if and only if the inequality i in property (II) of Theorem 14 is strict for all covers G of F. Indeed, if G covers F and ρ(F)+µ(F) = ρ(G)+µ(G),thenF ∪eisnotaflatsince ρ¯(F ∪e)=ρ(F)+µ(F)=ρ(G)+µ(G)=ρ¯(G∪e). Nowassumestrictinequalityholdsinproperty(II)forallcoversofF. Ifx ∈ S−F,thenthereisacoverG ofF withF (G⊆cl (F ∪x),so ρ ρ¯(F ∪e)=ρ(F)+µ(F)<ρ(G)+µ(G)=ρ¯(G∪e)≤ρ¯(F ∪{e,x}). (cid:3) Notethatifµ(G)=µ(F),thenequalitycannotholdinproperty(II)ofTheorem14,sinceρ(G)>ρ(F). Theseresultsgeneralizethoseformatroidextension. We definethecollarofM toconsistofeveryF ∈ i M that is covered by some G ∈ M with j < i. In a matroid (r,S), if a flat G covers a flat F, then i j r(G)−r(F)=1. If(r¯,S∪e)isasingle-elementextensionandF ∈M1,thenF ∪eisaflatofr¯ifandonly ifF isnotinthecollarofM1. 4. GENERATINGA CATALOGOF SMALL2-POLYMATROIDS Nowwewillspecializetheresultsoftheprevioussectionto2-polymatroids. Suppose(ρ,S) isa 2-polymatroidwithcollectionofflatsF(S). SupposethatF(S) istheunionof three disjointsets, M0, M1, andM2, some of which may be empty. Let e be an elementnotin S. We define a functionρ¯: 2S∪e →Nasfollows. ForX ⊆S,defineρ¯(X)=ρ(X)and ρ¯(X ∪e)=ρ(X)+i where cl(X)∈M . i When computing the extensible partitions of a 2-polymatroid, we found it convenient to work with the followingverbosespecializationofTheorem14. Theorem18. Asdefined,(ρ¯,S ∪e)is a2-polymatroidextensionof(ρ,S)ifandonlyifthe followingseven conditionsaremet. (1) IfF ∈M2,G∈F(S),F ⊆G,andρ(G)−ρ(F)=1,thenG∈M1∪M2. Inotherwords,ifF ∈M2 iscoveredbyaflatGof(ρ,S)ofonerankhigher,thenGcannotbeinM0. (2) IfF,G∈M0and(F,G)isamodularpair,thenF ∩G∈M0aswell. (3) IfF,G∈M0andρ(F)+ρ(G)=ρ(F ∪G)+ρ(F ∩G)+1,thenF ∩G∈M0∪M1. (4) If F,G ∈ M1 and (F,G) is a modular pair, then either F ∩G ∈ M1 as well, or F ∩G ∈ M2 and cl(F ∪G)∈M0. (5) IfF ∈M0,G∈M1,and(F,G)isamodularpair,thenF ∩GcannotbeinM2. (6) ThesetM2isdown-closedinthelatticeF(ρ,S). (7) ThesetM0isup-closedinthelatticeF(ρ,S). SketchofProof. Condition(II)ofTheorem14specializestocondition(1)here,condition(I)toconditions(2) through(5),andcondition(III)toconditions(6)and(7). (cid:3) Theflatsof(ρ¯,S∪e)arethesets (1) F inM1∪M2, (2) F ∪e,forF ∈M0, (3) F ∪e,forF ∈M ,withi>0,where, i (a) F hasnocoverGinMi−1withρ(G)=ρ(F)+1,and (b) ifi=2,F hasnocoverGinM0withρ(G)=ρ(F)+2. 6 ENUMERATIONOF2-POLYMATROIDSONUPTOSEVENELEMENTS Forexample,let(ρ,{a,b})bethe2-polymatroidconsistingoftwolinesplacedfreelyinaplane.Tobespe- cific,defineρ(∅)=0,ρ({a})=ρ({b})=2,andρ({a,b})=3. Thesingle-elementextensioncorresponding totheextensiblepartition (M0,M1,M2)=({{a,b}},{{a},{b}},{∅}) isthe2-polymatroidconsistingofthreelinesplacedfreelyinaplane. Usingtheresultsofthissection,weendeavoredtocatalogallsmall2-polymatroidsonacomputerbymeans ofacanonicaldeletionalgorithm. Definition19. SupposeX isacollectionofcombinatorialobjectswithgroundset{1,...,n}andanotionof isomorphism.AfunctionC: X →X isacanonicallabelingfunctionifthefollowingholdforallX,Y ∈X: (i) X isisomorphictoC(X),and (ii) C(X)=C(Y)ifandonlyifX isisomorphictoY. Inthiscase,C(X)iscalledthecanonicalrepresentativeofX. BrendanMcKay’snautyprogramefficientlycomputescanonicallylabelingsofcoloredgraphs. Inorder tomakeuseofit,weconvertpolymatroidsintographsusingthefollowingconstruction. Definition20. Givenanintegerpolymatroid(ρ,S), defineacolored,bipartitegraphwith bipartitionS and F(ρ,S). Anedgebetweene ∈ S andF ∈ F(ρ,S)exists ifandonlyife ∈ F. ColorF ∈ F(ρ,S)withits rank,ρ(F). Coloreache∈S with−1. Calltheresultinggraphtheflatgraph1oftheintegerpolymatroid. NotethatifX ⊆SandifF isthesmallestflatcontainingX,thenρ(X)=ρ(F). Intermsoftheflatgraph, therankofasetX ⊆ S equalstheleastcoloramongstthoseverticesadjacenttoeveryelementofX. Using thisobservation,itiseasytoprovethenextproposition. Proposition21. Two integer polymatroidsare isomorphic if and only if their flat graphs are isomorphic as coloredgraphs.(Byanisomorphismofacoloredgraph,wemeanagraphisomorphismthatmapseachvertex toanotherofthesamecolor.) Therefore,inordertocanonicallylabela2-polymatroid,itsufficestoconsideritsflatgraph. Thennauty isusedtocomputeacanonicallabelingoftheflatgraph.Whenrestrictedtothegroundsetofthepolymatroid, thisgivesacanonicallabelingofthepolymatroid.Foradescriptionofthealgorithmsusedbynautysee[10] and[11]. Onemayalsofindtheexpositionin[5]helpful. NowwehaveallthetoolsneededtoadaptAlgorithm1of[9]to2-polymatroids. Supposewearegivena setX thatconsistsofpreciselyonerepresentativeofeachisomorphismclassof2-polymatroidsontheground n set{1,...,n}. Thefollowingalgorithmproducesitscounterpart,Xn+1,fortheset{1,...,n+1}. Algorithm1Isomorph-freegenerationof2-polymatroids foreachρ∈X do n SetYρ ←∅,thecollectionofextensionsofρthatshouldappearinXn+1. foreachextensiblepartition(M0,M1,M2)ofρdo Letρ¯betheextensionofρassociatedwiththispartition. Canonicallylabelρ¯. Setρ′ ←ρ¯\(n+1),thecanonicaldeletion. Canonicallylabelρ′. ifρ=ρ′andρ¯6∈Y then ρ SetY ←Y ∪ρ¯. ρ ρ endif endfor SetXn+1 ←Xn+1∪Yρ. endfor return X n+1 1Inourimplementation,wefounditprudenttoinsertanisolatedvertexofrankrifnoflatsofrankrexisted,forr<ρ(S).Thismade iteasiertoworkwiththelabelingsusedbynauty. ENUMERATIONOF2-POLYMATROIDSONUPTOSEVENELEMENTS 7 Afewcommentsareinorder. Notethatthetestρ = ρ′ isforequality,notisomorphism. Inourimplemen- tation,thecollectionsY arebinarytrees,ratherthanmerelysets,inordertospeedupthesearchρ∈Y . ρ ρ The task of finding all extensible partitions for a polymatroidρ is relatively straightforward, but tedious. First,acandidateforamodularcutM0isfound.SinceM0isanup-closedset,itsufficestokeeptrackofthe minimalflatsinM0. Thesearefoundasindependentsetsofagraphwithvertexsetequaltotheflatsofρ. If oneflatiscontainedinanother,anedgeisplacedbetweenthetwo. Condition(2)ofTheorem18isthenused tonarrowthesearch. Anedgeisalsoplacedbetweenanytwoflatsthatformamodularpair. Theindependent setsinthisgrapharetheminimalmembersofourcandidatesforM0.GivenanacceptablecandidateforM0,a morecomplicatedprocedureisusedtofindallpossiblecandidatesforM1. Theremainingflatsareobviously assigned to M2. Unfortunately, the resulting partition must be checked to see if it satisfies conditions (1) through(5),sincesomeofthesemayfailfornon-minimalmembersofM0orM1. Finally, note that each iteration of the outermostfor loop may be run in parallel since extensions of two differentmembersofX areneverdirectlycomparedtoeachother. n 5. IMPLEMENTATIONAND RESULTS WeimplementedthisalgorithmintheCprogramminglanguage.Inordertodeterminethecoverrelationsfor flats,weemployedtheATLASlibrary[16]tomultiplytheadjacencymatricesofgraphs.Weusedtheigraph library [4] to find independent sets in graphs. A computer with a single 6-core Intel i7-3930K processor clockedat 3.20GHzrunning64-bitUbuntuLinuxexecutedthe resulting program. After approximatelyfour days,acatalogofall2-polymatroidsonsevenorfewerelementswasgenerated. Thefollowingtableliststhenumberof2-polymatroids,uptoisomorphism,onthegroundset{1,...,n}, byrank. Thenumberofunlabeled2-polymatroids rank\n 0 1 2 3 4 5 6 7 0 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 2 1 4 10 21 39 68 112 3 2 12 49 172 573 1890 4 1 10 78 584 5236 72205 5 3 49 778 18033 971573 6 1 21 584 46661 149636721 7 4 172 18033 19498369 8 1 39 5236 149636721 9 5 573 971573 10 1 68 72205 11 6 1890 12 1 112 13 7 14 1 total 1 3 10 40 228 2380 94495 320863387 Thefollowingpropositionisthekeytoproducingtheanalogoustableforlabeled2-polymatroids. Proposition22. Theautomorphismsofanintegerpolymatroid(ρ,S)areinone-to-onecorrespondencewith theautomorphismsofitsflatgraph. SketchofProof. Thisisnothardtoshow.Itfollows,forexample,fromtheremarksinSection1of[12],which employsthelanguageofhypergraphs. (cid:3) Sincenautycaneasilycomputetheautomorphismgroupsoftheflatgraphsofthesepolymatroids,apply- ingthe Orbit-StabilizerTheoremgivesa countof the numberoflabeled 2-polymatroidson 7 elements. The followingtableliststhenumberoflabeled2-polymatroids,onthegroundset{1,...,n},byrank. 8 ENUMERATIONOF2-POLYMATROIDSONUPTOSEVENELEMENTS Thenumberoflabeled2-polymatroids rank\n 0 1 2 3 4 5 6 7 0 1 1 1 1 1 1 1 1 1 1 3 7 15 31 63 127 2 1 6 29 135 642 3199 16879 3 3 41 477 5957 87477 1604768 4 1 29 784 27375 1554077 189213842 5 7 477 41695 7109189 3559635761 6 1 135 27375 21937982 733133160992 7 15 5957 7109189 86322358307 8 1 642 1554077 733133160992 9 31 87477 3559635761 10 1 3199 189213842 11 63 1604768 12 1 16879 13 127 14 1 total 1 3 14 115 2040 109707 39445994 1560089623047 The symmetry of the columns in the above tables is explained by the following notion of duality for k- polymatroids. Definition23. Givenapolymatroid(ρ,S),definethek-dualρ∗: 2S →Nby ∗ ρ (X)=k|X|+ρ(S−X)−ρ(S). Itiseasilyseenthatρ∗ isitselfak-polymatroidandthattheoperationofk-dualityisaninvolutiononthe setofk-polymatroidsonafixedgroundsetwhichrespectsisomorphism. (Infact,itisshownin[17]tobethe theuniquesuchinvolutionthatinterchangesdeletionandcontraction.) Welshconjecturedthatthenumberofmatroidsonafixedsetisunimodalinrankin[15]. Thecounterpartof thisconjecturefork-polymatroidsisfalse. Thetableaboveshowsthatitfailsfor2-polymatroidson7elements. Sincethenumberoflabeled2-polymatroidsonsevenelementsisnearlyafactorof7!morethanthenum- ber of unlabeled ones, it seems reasonable to conjecture that, asymptotically, almost all 2-polymatroidsare asymmetric. Theproofin [8]thatalmostallmatroidsarelooplesscarriesoverwithoutchangeto 2-polymatroids. Our catalogsuggeststhatastrongerpropertyholdsfor2-polymatroids. Weconjecturethat,asymptotically,almost all2-polymatroidscontainnoelementsofranklessthan2. Hereistheevidencefromourcatalog:thenumber ofunlabeled2-polymatroidson{1,...,n}withnoelementsofranklessthan2. n 1 2 3 4 5 6 7 count 1 2 8 51 696 49121 304541846 Thistableshouldbecomparedtothefirsttableinthissection. 6. A CONFIRMATION Considerthatthelabeledsingle-elementextensionsofak-polymatroidareinfactsolutionstoacertaininte- gerprogrammingproblem.Whenallsubsetsofthegroundsetaretakenasvariables,inequalitiesguaranteeing theaxiomsofak-polymatroidareeasilywritten. Tobeconcrete,letρ: S → Nbeak-polymatroidandlete beanelementnotinS. Regardρ¯(X)asavariableforeachX ⊆ S ∪e. Fixρ¯(A) = ρ(A)forA ⊆ S. Also fixρ¯(S∪e)=ρ(S)+c,wherecisanaturalnumbernogreaterthank. Nownonnegativeintegersolutionsto thesystemofinequalitiesbelowareinone-to-onecorrespondencewithlabeledsingle-elementextensionsofρ whichincreasetherankofρbyc. ENUMERATIONOF2-POLYMATROIDSONUPTOSEVENELEMENTS 9 ρ¯(A)+ρ¯(A∪f ∪g)≤ρ¯(A∪f)+ρ¯(A∪g) forA⊆S∪eandf,g ∈(S∪e)−A; 0≤ρ¯(A∪f)−ρ¯(A)≤k forA⊆S∪eandf ∈(S∪e)−A; and ρ¯(A)≤k|A| forA⊆S∪e. Here,weareusingaconditionequivalenttosubmodularity;seeTheorem44.2of[14]foraproofofequiv- alence. The open-sourceoptimization software SCIP [1] is able to countthe number of integer solutions to suchinequalities. UsingSCIPwe verifiedthenumbersoflabeled2-polymatroidsgivenearlier. Notethat, in theversionofSCIPweusedinApril2013,itwasnecessarytoturnoffallpre-solvingoptionsinordertoob- tainaccurateresults. Thisprocesstookapproximately13weeksusingthecomputerdescribedintheprevious section. 7. ACKNOWLEDGEMENTS Theauthorwouldliketothanktheanonymousrefereeforcarefullyreadingthispaperandprovidingsug- gestionswhichimproveditsexposition. REFERENCES [1] TobiasAchterberg.Scip:Solvingconstraintintegerprograms.MathematicalProgrammingComputation,1(1):1–41,July2009. [2] JohnE.Blackburn, HenryH.Crapo, andDenis A.Higgs. Acatalogue ofcombinatorial geometries. Math. Comp., 27:155–166; addendum,ibid.27(1973),no.121,loosemicrofichesuppl.A12–G12,1973. [3] HenryH.Crapo.Single-elementextensionsofmatroids.J.Res.Nat.Bur.StandardsSect.B,69B:55–65,1965. [4] Ga´borCsa´rdiandTama´sNepusz.Theigraphsoftwarepackageforcomplexnetworkresearch.InterJournalComplexSystems,page 1695,2006. [5] StephenG.HartkeandA.J.Radcliffe.McKay’scanonicalgraphlabelingalgorithm.InCommunicatingMathematics,volume479 ofContemp.Math.,pages99–111.Amer.Math.Soc.,Providence,RI,2009. [6] La´szlo´Lova´szandMichaelD.Plummer.MatchingTheory.AMSChelseaPublishing,Providence,RI,2009.Correctedreprintofthe 1986original. [7] YoshitakeMatsumoto,SonokoMoriyama,HiroshiImai,andDavidBremner.Matroidenumerationforincidencegeometry.Discrete Comput.Geom.,47(1):17–43,2012. [8] DillonMayhew,MikeNewman,DominicWelsh,andGeoffWhittle.Ontheasymptoticproportionofconnectedmatroids.European J.Combin.,32(6):882–890,2011. [9] DillonMayhewandGordonF.Royle.Matroidswithnineelements.J.Combin.TheorySer.B,98(2):415–431,2008. [10] BrendanD.McKay.Practicalgraphisomorphism.InProceedingsoftheTenthManitobaConferenceonNumericalMathematicsand Computing,Vol.I(Winnipeg,Man.,1980),volume30,pages45–87,1981. [11] BrendanD.McKayandAdolfoPiperno.Practicalgraphisomorphism,II.J.SymbolicComput.,60:94–112,2014. [12] GaryL.Miller.Isomorphismofgraphswhicharepairwisek-separable.Inform.andControl,56(1-2):21–33,1983. [13] JamesOxley.MatroidTheory,volume21ofOxfordGraduateTextsinMathematics.OxfordUniversityPress,Oxford,secondedition, 2011. [14] AlexanderSchrijver.Combinatorial optimization.Polyhedraandefficiency. Vol.B,volume24ofAlgorithmsandCombinatorics. Springer-Verlag,Berlin,2003.Matroids,trees,stablesets,Chapters39–69. [15] D.J.A.Welsh.Combinatorialproblemsinmatroidtheory.InCombinatorialMathematicsanditsApplications(Proc.Conf.,Oxford, 1969),pages291–306.AcademicPress,London,1971. [16] R.ClintWhaleyandAntoinePetitet.MinimizingdevelopmentandmaintenancecostsinsupportingpersistentlyoptimizedBLAS. Software:PracticeandExperience,35(2):101–121,February2005. [17] GeoffWhittle.Dualityinpolymatroidsandsetfunctions.Combin.Probab.Comput.,1(3):275–280,1992.