ebook img

Enterprise Resource Planning and Business Intelligence Systems for Information Quality PDF

150 Pages·2018·2.663 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Enterprise Resource Planning and Business Intelligence Systems for Information Quality

Contributions to Management Science Carlo Caserio · Sara Trucco Enterprise Resource Planning and Business Intelligence Systems for Information Quality An Empirical Analysis in the Italian Setting Contributions to Management Science More information about this series at http://www.springer.com/series/1505 Carlo Caserio Sara Trucco (cid:129) Enterprise Resource Planning and Business Intelligence Systems for Information Quality An Empirical Analysis in the Italian Setting 123 CarloCaserio SaraTrucco Faculty of Economics Faculty of Economics Universitàdegli Studi eCampus Universitàdegli Studi Internazionali Novedrate diRoma Italy Rome Italy ISSN 1431-1941 ISSN 2197-716X (electronic) Contributions toManagement Science ISBN978-3-319-77678-1 ISBN978-3-319-77679-8 (eBook) https://doi.org/10.1007/978-3-319-77679-8 LibraryofCongressControlNumber:2018936625 ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAG partofSpringerNature Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To my family Carlo Caserio To my Mom and Dad Sara Trucco Preface Nowadays, Information Technology (IT) innovations, the advent of the Internet, and the ease offinding and sharing information are all elements that contribute to obtaining overwhelming amounts of data and information. On the one hand, managers can now easily find and store information, and on the other hand, this hyper-amount of data does not allow us to distinguish between “good” and “bad” information. Furthermore, the data and information stored in enterprise databases maybeobsolete,inaccurate,irrelevant,orpartial.Inotherwords,companiesdonot finditdifficulttoacquireandstoreahuge“quantity”ofdataandinformation.Their probleminsteadistoobtainanadequatelevelof“quality”ofdataandinformation. The point is that the increased volume of data and information can undermine the capacityofcompaniestodiscernqualityfromnon-qualitydataandinformation,and this difficulty is even more crucial when we consider that we are living in an information economy where data, information, and knowledge become extremely strategic for companies. Therefore, the quality of information deserves particular attention. Although IT has played a key role in bringing about information overload and underload, possible solutions to these phenomena are still being sought in the IT field. Integrated systems, data management systems, data warehousing, data min- ing, and knowledge discovery tools are some examples of IT solutions that com- panies are adopting to deal with information overload/underload. One of the most effectivesolutionsseemstobetheimplementationofEnterpriseResourcePlanning (ERP) systems, which improve data quality, data integrity, and system integration. Inadditiontoimprovingdataqualityandsystemintegration,companiesalsoaim atimprovingtheircapacitytoperformdataanalysis.Asamatteroffact,inorderto pursue the objective of improving the quality of information, companies need to pay attention both to the quality of incoming data and to the capacity to analyze it anddelivertheresultinginformationtotherightperson,attherighttime.Therefore, Business Intelligence (BI) systems are another important solution that companies usetoimprovetheirdata analysis andprocessingcapabilities andtorecognizeand select relevant data for a more effective decision-making process. vii viii Preface Thismanuscriptwillexamine,throughanempiricalanalysis,theroleplayedby ERP and BI systems in reducing or managing information overload/underload and thus in improving the information quality perceived by the Italian manager. The research is based on the idea that the improvement of information systems, achievablebymeansofERPandBIsystems,may reduceoreliminateinformation overload/underload. We also investigate whether the combined adoption of ERP and BI systems is more effective in dealing with information overload/underload thanwouldbethesingleadoptionofERPorBIsystems.Furthermore,theresearch presented in this book examines the influence that ERP and BI systems may have on the features of information flow—such as information processing capacity, communication and reporting, the frequency of meetings, and information sharing —and, in turn, the influence of information flow features on information quality. Theresearchwas made possible bythe financialsupportoftheUniversità degli Studi Internazionali di Roma (UNINT). This study is part of a larger project on accounting information systems. Novedrate, Italy Carlo Caserio Rome, Italy Sara Trucco Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 A Brief Overview of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Theoretical Contributions of the Present Work . . . . . . . . . . . . . . . 3 1.3 Managerial Implications of the Present Work. . . . . . . . . . . . . . . . 5 1.4 Structure of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Enterprise Resource Planning Systems . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 The Evolution of ERP Systems. . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Information Quality and ERP . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.1 Information Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.2 ERP System for Information Quality. . . . . . . . . . . . . . . . . 21 2.4 Critical Success Factor for ERP Implementation. . . . . . . . . . . . . . 23 2.5 Critical Success Factors for ERP Post-implementation . . . . . . . . . 26 2.6 Advantages and Disadvantages of ERPs . . . . . . . . . . . . . . . . . . . 27 2.6.1 Potential Benefits of ERP Adoption . . . . . . . . . . . . . . . . . 27 2.6.2 A Framework for Classifying the Benefits of ERP Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6.3 Potential Disadvantages of ERP Adoption. . . . . . . . . . . . . 31 2.7 ERP as a Driver of Alignment Between Management Accounting Information and Financial Accounting Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.8 The Managerial Role of the Chief Information Officer . . . . . . . . . 33 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Business Intelligence Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Business Intelligence and Companies Needs. . . . . . . . . . . . . . . . . 44 3.3 BI for Management Information Systems Needs. . . . . . . . . . . . . . 48 ix x Contents 3.3.1 Alignment to Group Logics . . . . . . . . . . . . . . . . . . . . . . . 48 3.3.2 Coordination and Technical-Organizational Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.3 Improvement of Data Management and Decision Support Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.4 Improvement in Communications . . . . . . . . . . . . . . . . . . . 53 3.4 BI for Strategic Planning Needs . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4.1 Monitoring of Environmental Signals . . . . . . . . . . . . . . . . 55 3.4.2 Planning and Control Requirements . . . . . . . . . . . . . . . . . 57 3.4.3 Innovative BI Tools for the Adaptation to Environmental Conditions . . . . . . . . . . . . . . . . . . . . . . 59 3.5 BI for Marketing Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.6 BI for Regulations and Fraud Detection Needs. . . . . . . . . . . . . . . 61 3.7 Critical Success Factors of BI Implementation and Adoption . . . . 62 3.8 BI Maturity Models and Lifecycle. . . . . . . . . . . . . . . . . . . . . . . . 65 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4 ERP and BI as Tools to Improve Information Quality in the Italian Setting: The Research Design . . . . . . . . . . . . . . . . . . . 75 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Literature Review Supporting the Research Design. . . . . . . . . . . . 76 4.2.1 Literature Review on Information Overload and Information Underload. . . . . . . . . . . . . . . . . . . . . . . . 76 4.2.2 Links Between Information Overload/Underload and ERP Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2.3 Links Between Features of Information Flow and ERP Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2.4 Links Between Information Overload/Underload and Business Intelligence Systems . . . . . . . . . . . . . . . . . . 80 4.2.5 Links Between Features of Information Flow and Business Intelligence Systems . . . . . . . . . . . . . . . . . . . . . 82 4.2.6 The Combined Use of ERP and Business Intelligence: Information Overload/Underload and Features of Information Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2.7 Literature Review on Information Quality . . . . . . . . . . . . . 84 4.2.8 Links between Features of Information Flow and Information Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3 Sample Selection and Data Collection . . . . . . . . . . . . . . . . . . . . . 89 4.4 Variable Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4.1 Research Variable Measurement. . . . . . . . . . . . . . . . . . . . 90 4.4.2 Variable Measurement: Control Variables . . . . . . . . . . . . . 94 4.5 Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.