ebook img

Engineering Problems for Undergraduate Students: Over 250 Worked Examples with Step-by-Step Guidance PDF

738 Pages·2019·20.918 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Engineering Problems for Undergraduate Students: Over 250 Worked Examples with Step-by-Step Guidance

Xian Wen Ng Engineering Problems for Undergraduate Students Over 250 Worked Examples with Step-by-Step Guidance Engineering Problems for Undergraduate Students Xian Wen Ng Engineering Problems for Undergraduate Students Over 250 Worked Examples with Step-by-Step Guidance XianWenNg Singapore,Singapore ISBN978-3-030-13855-4 ISBN978-3-030-13856-1 (eBook) https://doi.org/10.1007/978-3-030-13856-1 LibraryofCongressControlNumber:2019935805 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Engineering Problems for Undergraduate Students contains over 250 example problems covering key topics in engineering courses. Step-by-step solutions are presented with clear and detailed explanations. This book will support a thorough understanding of fundamental concepts in engineering for tertiary-level students. The problems in this book are quality examples which were carefully selected to demonstrate the application of abstract concepts in solving practical engineering problems, with comprehensive guidance provided in the explanations that follow eachstepofthesolutions. Topics included in this book are fundamental in the engineering discipline. Hence,theyareversatileintheiroverarchingapplicationacrossvariousengineering sub-specializations.Thesetopicsincludethermodynamics,fluidmechanics,separa- tionprocesses(e.g., flashdistillation), reactordesignandkinetics(includingbiore- actor concepts), and engineering mathematics (e.g., Laplace transform, differentiationandintegration,Fourierseries,statistics). Thereisalsoasectionincludedwhichsummarizeskeymathematicalformulaand other useful data commonly referred to when solving engineering problems. This book will support step-by-step learning for students taking first or second-year undergraduatecoursesinengineering. Singapore XianWenNg v Acknowledgments MyheartfeltgratitudegoestotheteamatSpringerfortheirunrelentingsupportand professionalismthroughoutthepublicationprocess.SpecialthankstoMichaelLuby, Nicole Lowary, and Brian Halm for their kind effort and contributions toward making this publication possible. I am also deeply appreciative of the reviewers formymanuscriptwhohadprovidedexcellentfeedbackandnumerousenlightening suggestionstohelpimprovethebook’scontents. Finally,Iwishtothankmylovedoneswhohave,asalways,offeredonlypatience andunderstandingthroughouttheprocessofmakingthisbookareality. vii Contents Mathematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 UsefulMathematicalFormula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ComplexNumbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 HyperbolicTrigonometricFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . 2 TrigonometricFormulaeandIdentities. . .. . . .. . . .. . . .. . . . .. . . .. 3 GraphicalTransformationsandCommonFunctions. . . . . . . . . . . . . . . 4 PowerSeries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 FourierSeries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 DifferentiationTechniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 IntegrationTechniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 UsefulIntegrals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 PartialFractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 DifferentiationandIntegration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 LaplaceTransformandTransferFunctions. . . . . . . . . . . . . . . . . . . . . . . 55 MultipleIntegrals. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 FourierSeries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 EigenfunctionsandEigenvalues. .. . . . .. . . .. . . . .. . . .. . . . .. . . . .. 113 Thermodynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 SeparationProcesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 ReactorKinetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 FluidMechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729 ix About the Author Xian Wen Ng graduated with First-Class Honors from the University of Cam- bridge,UK,withaMaster’sDegreeinChemicalEngineeringandBachelorofArts in2011andwassubsequentlyconferredaMasterofArtsin2014.Shewasranked second in her graduating class and was the recipient of a series of college scholar- ships, including the Samuel Taylor Scholarship, Thomas Ireland Scholarship, and British Petroleum Prize in Chemical Engineering, for top performance in consecu- tive years of academic examinations. Ng was also one of two students from CambridgeUniversityselectedfortheCambridge-MassachusettsInstituteofTech- nology (MIT) exchange program in Chemical Engineering, which she completed withHonorswithacumulativeGPAof4.8(5.0).DuringhertimeatMIT,shewas alsoapart-timetutorforjuniorclassesinengineeringandpursuedotherdisciplines includingeconomics,realestatedevelopment,andfinanceatMITaswellastheJohn F.KennedySchoolofGovernmentatHarvardUniversity.Upongraduation,Ngwas electedbyherCollegeFellowshiptotheTitleofScholar,asamarkofheracademic distinction. Since graduation, Ng has been keenly involved in teaching across various academic levels, doing so both in schools and with smaller groups as a private tutor.Ng’stopicsofspecializationrangefromsecondary-levelMathematics,Phys- ics,andChemistrytotertiary-levelMathematicsandEngineeringsubjects. xi Mathematics Useful Mathematical Formula Before we begin to tackle mathematics, we should familiarize ourselves with mathematicalformulaeoridentitiesthathelpusobservepatternsinproblems andhencededucemoreefficientapproachestosolutions.Ihavelistedbelowa collectionofusefulidentitiesandformulaethatareworthremembering. Complex Numbers Thecomplexnumberzcanbeexpressedinthefollowingforms,wherei2¼(cid:2)1. ©SpringerNatureSwitzerlandAG2019 1 X.W.Ng,EngineeringProblemsforUndergraduateStudents, https://doi.org/10.1007/978-3-030-13856-1_1 2 Mathematics InCartesianform,wherez*isthecomplexconjugateofz. z¼xþiy; z(cid:3) ¼x(cid:2)iy jzj¼x2þy2 ¼zz(cid:3) Inpolarform,whereθistheargumentofz. z¼reiðθþ2nπÞ jzj¼r x¼rcosθ; y¼rsinθ Intrigonometricform z¼rðcosθþisinθÞ (cid:1) (cid:3) 1 cosθ¼ eiθþe(cid:2)iθ 2 (cid:1) (cid:3) 1 sinθ¼ eiθ(cid:2)e(cid:2)iθ 2i DeMoivre’sTheorem ðcosθþisinθÞn ¼einθ ¼ cosnθþisinnθ Hyperbolic Trigonometric Functions coshz¼ cosiz isinhz¼ siniz itanhz¼ taniz

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.