ebook img

Engineering Mechanics 2: Strength of Materials. An introduction with many examples PDF

328 Pages·2023·4.351 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Engineering Mechanics 2: Strength of Materials. An introduction with many examples

Christian Mittelstedt Engineering Mechanics 2: Strength of Materials An introduction with many examples Engineering Mechanics 2: Strength of Materials Christian Mittelstedt Engineering Mechanics 2: Strength of Materials An introduction with many examples ChristianMittelstedt TechnicalUniversityofDarmstadt Darmstadt,Germany ISBN978-3-662-66589-3 ISBN978-3-662-66590-9(eBook) https://doi.org/10.1007/978-3-662-66590-9 SpringerVieweg ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringer-VerlagGmbH, DE,partofSpringerNature2023 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublica- tiondoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromthe relevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Editor-in-Chief:MichaelKottusch ThisSpringerViewegimprintispublishedbytheregisteredcompanySpringer-VerlagGmbH,DE,part ofSpringerNature. Theregisteredcompanyaddressis:HeidelbergerPlatz3,14197Berlin,Germany Preface Thisbookoriginatedfrommylecturenotesforthecourse“EngineeringMechanics 2”, which I hold for students of mechanical engineering in the second semester, butalsoforstudentsofotherdisciplinesattheTechnicalUniversityofDarmstadt. The book follows the classical division of engineering mechanics as it is taught at universities in Germany and is dedicated to the determination of stresses and deformationsinelasticbodies. Feedbackofanykindiswelcomeanytime. Darmstadt ChristianMittelstedt Autumn2022 v Contents 1 Introductiontolinearelasticity . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Stateofstress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Baruntertension . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Stressvectorandstresstensor . . . . . . . . . . . . . . . . . . 4 1.2.3 Equilibriumconditions . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Deformationandstrainstate. . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 Barundertension . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.2 Infinitesimalstraintensor . . . . . . . . . . . . . . . . . . . . . 10 1.4 ThegeneralizedHooke’slaw . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.2 Three-dimensionalmateriallaw . . . . . . . . . . . . . . . . . 16 1.4.3 Temperatureinfluence . . . . . . . . . . . . . . . . . . . . . . . 17 2 Planestressstate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Stresstransformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 Principalstresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 Mohr’sstresscircle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1 Bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.1 Barstresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.2 Bardeformations . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.1.3 Staticallyindeterminatebars . . . . . . . . . . . . . . . . . . . 63 3.2 Barsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.1 Staticallydeterminatebarsystems. . . . . . . . . . . . . . . . 65 3.2.2 Staticallyindeterminatebarsystems . . . . . . . . . . . . . . 68 vii viii Contents 4 Beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Basicequationsforanarbitraryreferenceframe . . . . . . . . . . . 75 4.3 Firstcross-sectionalnormalization:CenterofgravityC . . . . . . . 88 4.3.1 Steiner’stheorem . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.3.2 Selectedelementarycases. . . . . . . . . . . . . . . . . . . . . 91 4.3.3 Compositecross-sections . . . . . . . . . . . . . . . . . . . . . 97 4.3.4 Stressanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.4 Secondcross-sectionalnormalization:Principalaxes . . . . . . . . 115 5 Beamdeflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.1 Basicequationsofbeambending. . . . . . . . . . . . . . . . . . . . . 127 5.2 Staticallydeterminatesingle-spanbeams . . . . . . . . . . . . . . . . 129 5.3 Staticallyindeterminatesingle-spanbeams. . . . . . . . . . . . . . . 137 5.4 Multi-spanbeams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.5 Standardbendingcases . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.5.1 Simplysupportedbeams . . . . . . . . . . . . . . . . . . . . . 153 5.5.2 Cantileverbeams . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.5.3 Staticallyindeterminatesystems . . . . . . . . . . . . . . . . . 158 5.5.4 Multi-spanbeamsandangledsystems . . . . . . . . . . . . . 165 5.6 Biaxialbending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6 Shearstressesinbeams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.2 Thick-walledcross-sections . . . . . . . . . . . . . . . . . . . . . . . . 176 6.3 Thin-walledcross-sections. . . . . . . . . . . . . . . . . . . . . . . . . 185 6.4 Shearcenter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 7 Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 7.2 Solidbarwithcircularcylindricalcross-section . . . . . . . . . . . . 209 7.3 Thin-walledbarwithcircularcylindricalcross-section . . . . . . . 211 7.4 Barswitharbitrarythin-walledcylindricalcross-sections . . . . . . 213 7.5 Barswithopenthin-walledcross-sections . . . . . . . . . . . . . . . 219 7.6 Determinationofinternalmoments . . . . . . . . . . . . . . . . . . . 224 8 Energymethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 8.1 Workandenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 8.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 8.1.2 Internalandexternalwork . . . . . . . . . . . . . . . . . . . . 236 8.1.3 Principleofworkandenergy . . . . . . . . . . . . . . . . . . . 237 8.2 Strainenergyandcomplementarystrainenergy . . . . . . . . . . . . 237 8.2.1 Thebar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 8.2.2 TheEuler–Bernoullibeam . . . . . . . . . . . . . . . . . . . . 244 Contents ix 8.2.3 Barundertorsion . . . . . . . . . . . . . . . . . . . . . . . . . . 248 8.2.4 Combinedload . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 8.3 Applicationoftheprincipleofworkandenergytothedetermination ofelasticdeformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 8.4 Theprincipleofvirtualforces. . . . . . . . . . . . . . . . . . . . . . . 253 8.4.1 Formulationforthebeam . . . . . . . . . . . . . . . . . . . . . 253 8.4.2 Theunitloadtheorem . . . . . . . . . . . . . . . . . . . . . . . 255 8.4.3 Useofintegraltables. . . . . . . . . . . . . . . . . . . . . . . . 259 8.5 Theforcemethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 8.5.1 Determinationofdeformationsofstatically determinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 8.5.2 Staticallyindeterminatesystems . . . . . . . . . . . . . . . . . 270 8.6 Reciprocitytheorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 8.6.1 Betti’stheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 8.6.2 Maxwell’stheorem . . . . . . . . . . . . . . . . . . . . . . . . . 279 8.7 Staticallyindeterminatesystems . . . . . . . . . . . . . . . . . . . . . 280 9 Bucklingofbars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 9.2 Typesofequilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 9.3 Determinationofcriticalloads . . . . . . . . . . . . . . . . . . . . . . 292 9.4 Bucklingofbars:ThefourEulercases . . . . . . . . . . . . . . . . . 297 9.4.1 Introductoryexample:EulercaseII . . . . . . . . . . . . . . . 297 9.4.2 EulercaseI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 9.4.3 EulercaseIII. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 9.4.4 EulercaseIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 9.4.5 Summaryoftheresults . . . . . . . . . . . . . . . . . . . . . . 306 9.5 Bucklinglength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 9.6 Generalformofthebucklingdifferentialequation . . . . . . . . . . 312 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 1 Introduction to linear elasticity Thepresentchapterdealswiththebasicsoflinearelasticity theoryandintroduces thecorrespondingstatevariables,i.e.stresses,strainsanddisplacements.Thegov- erning equations are the equilibrium conditions, the kinematic relations and the materiallaw,hereintheformofthegeneralizedHooke’slaw.Studentsareenabled toderiveandformulatethebasicequationsoflinearelasticitytheoryandtoformu- lateandsolvesimplefundamentalproblems. 1.1 Introduction In a solid (a so-called continuum) under load, a stress state will develop. Due to theload,deformationsoccurinthesolid,thusdisplacementsoftheindividualbody pointsoccur.Displacements areaccompaniedbystrains, theso-called strain state isformed. For a three-dimensional body, the above quantities – displacements, strains, stresses – are described by the following set of equations under a given load and prescribedboundaryconditions: (cid:2) Kinematicequations:Theso-calledkinematicequationsestablisharelationship betweenthedisplacementsandtheresultingstrains. (cid:2) Constitutiveequations:Theso-calledconstitutiveequationsestablisharelation- ship between the stresses and the strains. In the case of linear elasticity, the constitutiveequationsaredescribedbyHooke’slaw. (cid:2) Equilibriumconditions:Equilibriummustbeensuredateverypointofthesolid underconsideration. ©TheAuthor(s),underexclusivelicensetoSpringer-VerlagGmbH,DE,partofSpringer 1 Nature2023 C.Mittelstedt,EngineeringMechanics2:StrengthofMaterials, https://doi.org/10.1007/978-3-662-66590-9_1 2 1 Introductiontolinearelasticity 1.2 Stateofstress 1.2.1 Baruntertension Tomotivatetheconceptofthestress state,asanintroductoryelementaryexample we consider the straight linear elastic bar unter tension as shown in Fig. 1.1, top. Thebarhasthelengthl andthecross-sectionalareaAandisloadedatitscenterof gravitybythetensileforceF. The applied tensile force F causes forces inside the bar. To investigate this in more detail, we perform a vertical cut at an arbitrary point x of the bar (Fig. 1.1, middle). The forces acting inside the bar must be thought of as being uniformly distributed, and these distributed forces are called stress. It is common to use the symbol (cid:2) for the stress. Stresses are given in a corresponding unit of a force per unit area, e.g. in the unit [N=m2]. It is also possible to use the unit Pascal, where 1PaD1 N. m2 The stresses occurring in the given section are assumed to be constantly dis- tributedoverthecross-sectionalareaandalsoorientednormaltothecross-section, so that at this pointwealso speak of the so-called normalstresses (cid:2). Thenormal stressescanbesummeduptothenormalforceN ofthebar.Sincethenormalstress is constant across the cross-section, the following relationship holds between the normalforceN DF andthenormalstress(cid:2): N F (cid:2) D D : (1.1) A A Thesign of thenormalstress (cid:2) dependsonthe sign of thenormalforceN.If, as in this case, the bar is subjected to tension, the normal force N is positive, and thus, according to (1.1), the normal stress (cid:2) will also be positive, i.e. it will be atensilestress. IfthenormalforceN isnegative,then(cid:2) isalso negativeandthus acompressivestress. We now consider the bar under tension of Fig. 1.1 again and make a cut at an arbitrary location x under an inclination angle (cid:3) as shown in Fig. 1.2. The cross- sectionalareatobeconsideredhereiscalledANandiscalculatedasAND A .Such cos(cid:3) Fig.1.1 Barundertension A (top),normalstress(cid:2) for F F aperpendicularcutatan arbitrarylocationx(middle), x l replacementofthenormal stressbythenormalforceN F F (bottom). σ σ x F N F

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.