ebook img

Engineering Materials Science: Properties, Uses, Degradation, Remediation PDF

604 Pages·2004·55.63 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Engineering Materials Science: Properties, Uses, Degradation, Remediation

ENGINEERING MATERIALS SCIENCE: Properties, Uses Degradation and Remediation "Talking of education, people have now a-days" (he said) "got a strange opinion that every thing should be taught by lectures. Now, I cannot see that lectures can do so much good as reading the books from which the lectures are taken. I know nothing that can be best taught by lectures, except where experiments are to be shown. You may teach chymestry by lectures -- You might teach making of shoes by lectures!" James Boswell: L~fe of Dr Samuel.Johnson. 1766 ABOUT THE AUTHORS Hugh McArthur BA(Cantab) MSc PhD Dr Hugh McArthur, born in Africa, was educated at Cambridge University where he read Natural Science Tripos, specialising in metallurgy and corrosion. He spent 10 years in the corrosion laboratories in the Nuclear Power industry before joining Leicester Polytechnic (now De Montfort) in 1963. He gained an MSc from Leicester University and a PhD from Loughborough University in 1969 for his work on high strain fatigue. Dr McArthur is a corrosion consultant to the motor industry and has authored two books on motor vehicle corrosion. He was Principal Lecturer at De Montfort University and has spent 30 years specialising in electron microscopy and materials science teaching, research and consultancy to the construction industry. This is Dr McArthurs's second book on materials science. Duncan Spalding BSc (Hons) PhD Dr Duncan Spalding was educated at Leicester Polytechnic (now De Montfort University) where he read Building Surveying. He spent a number of years working in the building industry as a development surveyor, before moving to De Montfort University as a Research Fellow in 1993 where he gained a·PhD in 1999 for his work on modelling sources of contaminant emission from building materials. He has undertaken externally funded research, and has published articles in this area: and is currently Senior Lecturer in Materials Science at Leicester School of Architecture in De Montfort University. ENGINEERING MATERIALS SCIENCE Properties, Uses, Degradation and Remediation Hugh McArthur Former Principal Lecturer De Montfort University, Leicester and Corrosion Consultant to Automotive and Steel Manufacturing Industries, and British Steel Duncan Spalding Senior Lecturer in Materials Science Leicester School of Architecture De Montfort University, Leicester WP WOODHEAD PUBLISHING Oxford Cambridge Philadelphia New Delhi Published by Woodhead Publishing Limited, 80 High Street, Sawston, Cambridge CB22 3HJ www.woodheadpublishing.com Woodhead Publishing, 1518 Walnut Street, Suite 1100, Philadelphia, PA 19102-3406, USA Woodhead Publishing India Private Limited, G-2, Vardaan House, 7/28 Ansari Road, Daryaganj, New Delhi - 110002, India www.woodheadpublishingindia.com First published by Horwood Publishing Limited, 2004 Reprinted by Woodhead Publishing Limited, 2011 © McArthur and Spalding 2004 The authors have asserted their moral rights This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts have been made to publish reliable data and information, but the authors and the publisher cannot assume responsibility for the validity of all materials. Neither the authors nor the publisher, nor anyone else associated with this publication, shall be liable for any loss, damage or liability directly or indirectly caused or alleged to be caused by this book. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming and recording, or by any information storage or retrieval system, without permission in writing from Woodhead Publishing Limited. The consent of Woodhead Publishing Limited does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from Woodhead Publishing Limited for such copying. Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 978-1-898563-11-2 TABLE OF CONTENTS Acknowledgements XIX Sources ofI nformation xx Preface xxv 1 STRUCTURE OF MATERIALS 1.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 NOMENCLATURE AND COMPOSITION ........................ 2 1.2.1 Chemical Formulae ....................................... 3 1.2.2 Other Chemical Conventions ................................ 3 l.3ATOMICTHEORY ........................................... 4 1.3.1 Structure ofthe Atom ...................................... 5 1.3.2 Electron Configuration of Atoms ............................. 6 1.3.3 Isotopes ................................................ 8 1.4 CHARACTERISTICS OF CHEMICAL ELEMENTS . . . . . . . . . . . . . . . . . 8 1.5 PERIODIC TABLE OF ELEMENTS ............................ 10 1.6 ELECTRON CONFIGURATION OF ELEMENTS ................. 12 1.7 TRENDS ACROSS A PERIOD IN THE PERIODIC TABLE ......... 13 1.8 TRENDS WITHIN A GROUP IN THE PERIODIC TABLE .......... 16 1.8.1 Group 1 Elements (Li Na K Rb Cs) .......................... 16 1.8.2 Group 2 Elements (Be, Mg, Ca, Sr, Ba, Ra) ................... 18 1.8.3 Group 3 Elements (B, Al, Ga, In, Th) ........................ 19 1.8.4 Group 4 Elements (C, Si, Ge, Sn, Pb) ........................ 21 1.8.5 Group 5 Elements (N, P, As, Sb, Bi) ......................... 24 1.8.6 Group 6 Elements (0, S, Se, Te, Po) ......................... 25 1.8.7 Group 7 Elements (F, Cl, Br, I) ............................. 27 1.8.8 The Transition Metals .................................... 27 1.8.9 Metals and Non-metals ................................... 28 1.9 CHEMICAL BONDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.10 METALLIC BONDS ........................................ 29 vi Table of Contents 1.10.1 Electrical Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.10.2 Summary: Properties of the Metallic Bond ................... 31 1.11 COVALENT BONDS ....................................... 31 1.11.1 Covalent Bonds Formed with Non-metals (Groups 6, 7 and Hydrogen) .............................. 31 1.11.2 Covalent Bonds Formed with Group 4 Elements . . . . . . . . . . . . . . . 33 1.11.3 Summary: Properties of the Covalent Bond . . . . . . . . . . . . . . . . . . . 34 1.12 IONIC BONDS ............................................ 35 1.12.1 Summary: The Properties of the Ionic Bond .................. 35 1.13 MIXED BONDING ......................................... 36 1.14 VAN DER WAALS FORCES (OR 'BONDS') .................... 38 1.14.1 Summary: Properties of the van der Waals 'Bond' ............. 39 1.15 STRUCTURE OF SOLIDS ................................... 40 1.15. l Modelling Crystalline Solids .............................. 40 1.15.2 Packing Arrangements of Solids ........................... 41 1.15.3 Space Lattice and the Unit Cell ............................ 42 1.16 METALLIC STRUCTURES .................................. 45 1.17 COVALENT STRUCTURES ................................. 46 1.18 IONIC STRUCTURES ....................................... 48 1.18.1 [8]:[8] Structures ....................................... 48 1.18.2 [6]:[6] Structures ....................................... 50 1.18.3 [4]:[4] Structures ....................................... 51 1.18.4 More Complex Ionic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 1.18. 5 Water of Crystallisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 1.18.6 Ionic Substitution ....................................... 54 1.19 ACIDS AND ALKALIS (BASES) .............................. 57 1.19.1 Water ................................................ 59 1.19.2 Ionic Compounds Containing Off Groups ................... 60 1.19.3 pH .................................................. 62 1.19 .4 Effect of Temperature on pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 1.19.5 Properties of Acids and Alkalis ............................ 63 1.19.6 Conventions for Chemical Formulae for Acids and Alkalis ....... 63 1.19.7 Balancing Equations (Acid+ Base - Salt+ Water) ............. 65 1.19.8 Summary ............................................. 66 1.20 RADIOACTIVITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 1.20.1 Types ofRadiation ...................................... 67 1.20.2 Artificial Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 1.20.3 Balancing Nuclear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 1.20.4 Rates of Radioactive Decay ............................... 68 1.20.5 Uses of Radioactivity .................................... 69 1.20.6 Geological Dating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 1.20.7 Radon ................................................ 70 1.21 LAND FILL GASES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 1.21.1 Properties of the Gases Evolved . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Table of Contents vii 2 STATES OF MATTER AND PHYSICAL CONSTANTS 2.1 INTRODUCTION ........................................... 74 2.2 GASES .................................................... 74 2.2.1 Ideal Gas Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.2.2 Fundamental Kinetic Theory Equation for a Gas ................ 74 2.2.3 Relationships for Gases Based on Fundamental Theory .......... 75 2.2.4 Intermolecular Distance in Gases ............................ 76 2.2.5 Dalton's Law of Partial Pressure ............................ 76 2.2.6 Relative Humidity ....................................... 76 2.2.7 Vapour Pressure Stability of Compounds ..................... 77 2.3 LIQUIDS .................................................. 78 2.4 SOLIDS ................................................... 78 2.4.1 Amorphous State ........................................ 78 2.4.2 Crystalline State ......................................... 78 2.5 CHANGE OF PHASE AND LATENT HEAT ..................... 79 2.6 LIQUID TO SOLID CHANGE OF PHASE ....................... 81 2.6.1 Effect of Pressure ........................................ 82 2.6.2 Stability of Phases ....................................... 82 2.6.3 Crystallisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.6.4 Effect oflmpurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.7 LIQUID TO GAS CHANGE OF PHASE ......................... 85 2.8 DEFORMATION ............................................ 86 2.8.1 Elastic Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.8.2 Thennally Induced Dimensional Changes ..................... 89 2.9 SOLUTIONS ............................................... 93 2.9.1 Homogeneous Solutions ................................... 93 2.9.2 Heterogeneous Solutions .................................. 97 2.10 THIXOTROPY AND DILATANCY ............................ 99 3 MECHANICAL PROPERTIES AND TESTING 3.1 INTRODUCTION .......................................... 100 .. 3.2 TENSILE TESTING ........................................ 100 3.2.1 Load-Defonnation Relationships ........................... 102 3.2.2 Stress-Strain Relationships ................................ 103 3.2.3 Characterising Materials Using Stress-Strain Curves ............ 104 3 .3 COMPRESSION TESTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.4 SURFACE PROPERTIES .................................... 108 3.4.l Hardness .............................................. 108 3.5 TIME DEPENDENT MECHANICAL PROPERTIES .............. 110 3.5.1 Impact Testing ......................................... 110 3.5.2 Viscosity ............................................. 112 3.5.3 Viscoelastic Behaviour .................................. 113 3.5.4 Creep ................................................ 114 3.5.5 Fatigue ............................................... 116 3.6 MECHANISMS RESULTING IN CRACKING IN MATERIALS ..... 117 3.7 IN SERVICE INSPECTION AND TESTING ..................... 120 viii Table of Contents 3.7.1 Inspection Aids ........................................ 120 3.7.2 Surface Hardness ....................................... 120 3.7.3 Ultrasonic Pulses ............................ .' .......... 122 3.7.4 Electromagnetic Cover Measurement ....................... 123 3.7.5 Radiography ........................................... 124 3.7.6 Near-to-Surface Tests ................................... 125 3.7.7 Initial Surface Absorption Test (ISAT) ...................... 126 3.7.8 Resonant Frequency ..................................... 126 3.7.9 Subsurface Radar Surveys ................................ 126 3.7.10 Radiometry ........................................... 126 3.7.11 Neutron Moisture Measurement ........................... 127 3.7.12 Surface Permeability ................................... 127 3.8 REFERENCES ............................................. 128 4WATER 4.1 INTRODUCTION .......................................... 129 4.2 WATER SUPPLIES ......................................... 130 4.2.1 Water Board Sewage Treatment ........................... 131 4.3 HARD AND SOFT WATER .................................. 133 4.3.1 Temporary Hardness .................................... 133 4.3.2 Permanent Hardness ..................................... 135 4.3.3 Total Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.3.4 Advantages and Disadvantages of Hard Water ................ 135 4.4 WATER SOFTENING ....................................... 136 4.4.1 Method 1. Water Board Methods ........................... 136 4.4.2 Method 2. Base Exchange Process .......................... 136 4.4.3 Method 3. Addition of Soap ............................... 137 4.4.4 Method 4. Addition of Washing Soda Crystals ................ 138 4.4.5 Method 5. Garage Forecourt System ........................ 138 4.4.6 Method 6. Calgontm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 4.4.7 Other Water Softening Methods ........................... 138 4.5 REFERENCES ............................................. 138 5 MOISTURE EFFECTS IN BUILDINGS 5.1 INTRODUCTION .......................................... 139 5.2 MOISTURE SOURCES ...................................... 139 5.2.1 Construction Moisture Sources ............................ 139 5.2.2 Interior Moisture Sources ................................. 140 5.2.3 Exterior Moisture Sources ................................ 140 5.3 MOISTURE TRANSPORT AND STORAGE ..................... 141 5.4 CAPILLARITY (LIQUID WATER) ............................ 142 5.4.l Capillary Radius ........................................ 143 5.4.2 Surface Tension ........................................ 143 5.4.3 Contact Angle ......................................... 146 5.4.4 Mathematical Relationship for Capillarity .................... 147 5.5 ABSORPTION (LIQUID WATER) ............................. 148 Table of Contents ix 5.6ADSORPTION(WATER VAPOUR) ........................... 149 5.7 CAPILLARY CONDENSATION .............................. 151 5.8 MOISTURE CONTROL IN NEW BUILDINGS .................. 152 5.8.1 Surface Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.8.2 Pitched Roofs .......................................... 155 5.9 PENETRATING DAMPNESS (LIQUID WATER) ................ 156 5. 9 .1 Condition of the External Envelope . . . . . . . . . . . . . . . . . . . . . . . . . 15 6 5.9.2 Degree of Exposure to the Weather ......................... 157 5.9.3 Visual Diagnosis of Penetrating Dampness ................... 157 5.10 RISING DAMP (LIQUID WATER) ........................... 157 5.10.1 Visual Diagnosis of Rising Damp ......................... 157 5 .11 DAMP DETECTION EQUIPMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 5.11.1 Moisture Meters ....................................... 158 5.11.2 Calcium Carbide Meter (Speedy™) . . . . . . . . . . . . . . . . . . . . . . . . 159 5 .11.3 Exclusion Methods for Rising Damp . . . . . . . . . . . . . . . . . . . . . . . 161 5.12 CONDENSATION (WATER VAPOUR) ....................... 162 5.12. l Heating Moist Air ..................................... 162 5.12.2 Cooling Moist Air ..................................... 162 5.12.3 Surface Condensation ................................... 163 5.12.4 Interstitial Condensation ................................ 164 5 .12.5 Limiting Condensation in Buildings . . . . . . . . . . . . . . . . . . . . . . . . 164 5.12.6 Summary ............................................ 167 5.13 REFERENCES ............................................ 167 6 MOISTURE EFFECTS IN MATERIALS 6.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6.2 STRUCTURE OF POROUS MATERIALS . . . . . . . . . . . . . . . . . . . . . . . 170 6.3 WEATHERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 6.4 MOISTURE INDUCED DIMENSIONAL CHANGES . . . . . . . . . . . . . . 172 6.5 BULKING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 6.6 FROST DAMAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 6.6.l Volume Expansion Water - Ice ............................ 176 6.6.2 Hydraulic Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.6.3 Capillary Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6.6.4 Osmosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6.6.5 Factors Influencing Freeze-thaw Deterioration . . . . . . . . . . . . . . . . 179 6.6.6 Degradation Tests for Frost Resistance ...................... 180 6.7 WATER SOLUBLE SALTS .................................. 181 6. 7 .1 Efflorescence and Crypto-efflorescence . . . . . . . . . . . . . . . . . . . . . . 181 6.7.2 Types of Water Soluble Salts .............................. 181 6.7.3 Sources of Water Soluble Salts ............................ 182 6.7.4 Formation of Efflorescence ............................... 183 6.8 REFERENCES ............................................. 184 7 MASONRY MATERIALS 7.1 INTRODUCTION .......................................... 185

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.