ebook img

Engineering Elasticity: Elasticity with less Stress and Strain PDF

275 Pages·2022·29.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Engineering Elasticity: Elasticity with less Stress and Strain

Humphrey Hardy Engineering Elasticity Elasticity with less Stress and Strain Engineering Elasticity Humphrey Hardy Engineering Elasticity Elasticity with less Stress and Strain HumphreyHardy Pelzer,SC,USA The book has solutions to the exercises that are available to Professors only. These can be viewedat:https://link.springer.com/book/10.1007/978-3-031-09157-5. ISBN978-3-031-09156-8 ISBN978-3-031-09157-5 (eBook) https://doi.org/10.1007/978-3-031-09157-5 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface for Students Historically,thematerialsavailabletoengineersforconstructionconsistedofmate- rials that fail when deformed by relatively small amounts (e.g., stone, wood, and concrete).Tobuildcomputersimulationsforapplicationsofthesematerialsrequired simulating only small deformations. This has been done quite successfully using finiteelementsandmatrices.Thisapproachiscalledlinearelasticity. Theadventofmaterialswhichcanbedeformedbylargeamountswithoutfailing or fracturing (e.g., rubber, plastics, and biological materials) requires a different approach. A new approach is needed because large bending, compression, or extension (finite deformations) results in equations of motion that are nonlinear. To address the problem of finite deformations, classical elasticity has introduced many measures of deformation (strain) and the forces to produce the deformations (stress).Stressandstraincanbedefinedintermsofmatrices(second-ordertensors), andclassical elasticity textsrelate stress andstrain usinghigher-ordertensormath- ematics. This makes the mathematics of large deformations difficult, requiring graduatecoursesinstress,strain,andtensoranalysis. A different approach is taken in this text. Only one measure of stress and one measureofstrainisdefined.Therelationshipbetweenthesetwomeasuresisdefined in terms of energy instead of a direct relationship between stress and strain. The result is that many finite deformations can be simulated with only matrices (no higher-order tensors needed). Thus, all that is required is a familiarity with calculus-basedphysicsandlinearalgebra. The mathematics needed, example computer simulations, and experiments to measure material properties for large deformations of materials are all included here.Themathematicsbeginswithabriefreviewofthephysicsandlinearalgebra. Deformationsaredescribedintermsofmappingbetweentheinitialandfinalstates of the material. Forces and the relationship between force and energy follow. The constraints required on the energy function for isotropic materials are described. Next,simulationsareshownusingMathematica.Theseareexampleswhichtestand v vi PrefaceforStudents extendthetheory.Averyinexpensiveexperimentalsetupisdescribedtoshowhow materialpropertiescanbemeasured.Time-dependentsimulationsaredescribed,as well as the application of this approach to anisotropic materials. A number of differenttypesofoutputplotsarepresented. A more eloquent derivation of the equations is made by using the techniques of Euler and Lagrange, but this requires higher-level physics and mathematics. A chapter is included to show how the equations of linear elasticity follow from thefiniteelasticityequations.Finally,achapterisincludedforthosestudentsalready familiarwithclassicalelasticitytocomparetheapproachofusingasinglestressand strainmeasurewithclassicalelasticitydescriptions. Pelzer,SC,USA HumphreyHardy Preface for Instructors Thisbookisanengineeringapproachtofinitedeformations.Itisnotintendedtobe an introduction to classical finite elasticity. Classical finite elasticity introduces a dozenormorestressandstrainmeasures,makesuseofthetensorpropertyofthese measures, and expresses the equation of motion in terms of both the reference and bodycoordinates.Thisapproachdoesnoneofthesethings.Toseetheconnectionof thisapproachwithclassicalfiniteelasticity,seeChap.16. Theapproachhereistointroducetheengineertoonlywhatisneededtosolvea broadrangeofdeformations.Theapproachisbasedonthesamemodelthatisused in teaching engineers linear elastic deformations. In linear elasticity, engineers are introduced to Cauchy stress and strain and none of the many other measures of classical finite elasticity. Cauchy-Green tensors, Kirchhoff stress, and Lagrangian strain are not introduced in linear elasticity because they are not needed by the engineertosimulateapplicationsofsmalldeformationsandsmallrotations.Inthis text,theengineerisintroducedtoonlyonestressandonestrainmeasure,whichisall thatisneeded tosolvemanyfinitedeformationproblems.Becauseofthissimplifi- cation, the target audience for this approach can be second-year or third-year undergraduates, but as discussed below, with a slightly different order of chapters, thistextcouldalsobeusedforseniorsorgraduatestudents. Therelationshipbetweenanyfinitestressandstrainmeasureisexpressedinterms ofnon-lineardifferentialequationsandthereforerequiresnumericalsimulationsfor applications.ThebodyofthetextusesaminimizationtechniqueusingMathematica to numerically solve a number of examples. There are many other techniques and softwareavailablewhichcouldbeusedtosolvetheseexamples,butthisisnotatext onwritingcomputercode.Instead,theexamplessimplyshowsomeofthebreathof what is possible with a single stress and strain measure. The codes used are found onlinewithcommentssothattheenterprisingstudentcanreadandtranslatethiscode into any language they wish. No homework problems require Mathematica; how- ever,analgebraicsoftwareorcomputergraphicsprogramwouldbeusefulforsome of the homework problems. When these are needed, the individual problems statethis. vii viii PrefaceforInstructors Engineers also require experimental measurements of materials to provide the material property parameters that occur in the differential equations of elasticity. Chapter10isincludedtoillustrateonemethodofmakingphysicalmeasurementson amaterialandturningthesemeasurementsintotheneededmaterialparameters.The experimentissimpleandcosteffectivesothatitcanbeincludedinanycourse.The enterprisingstudentshouldhavenoproblemeitherreproducingtheexperimentsor designingmoreaccurateexperimentsusingmoresophisticated(andexpensive)tools if this is of interest to the instructor and student. In short, this text provides all an engineerneedstomodelmanymaterialsinfinitedeformations. Anyengineerthatrequiresthedescriptionoflargedeformationscanbenefitfrom thiscourse.Materialslikerubber,softplastics,andbiologicalmaterialsoftenundergo largedeformationswhenplacedinservice.Materialslikespaghetti,cakeicing,andcar bumpers are often extruded and also undergo large deformations. Even engineers producing movies can benefit from a correct description of large deformations of materials.Thisbook providestheory, experimental measurements of properties, and numericalsimulationsofthesetypesoflargedeformations.Ineachchapterofthebook, 8–12 problems have been provided. Solutions have been provided in the solutions manual.Mathematicasoftwarehasbeenprovided(online)fortheexamplesandfigures inthetext.Thesoftwareisnotdesignedtobecommercialcodebutisprovidedsothat no steps in the simulation are omitted and the code can be used as a model for the studenttoeitherextendthemodelsortranslatethemintoothercomputerlanguages.The Mathematica code can be read using the free Mathematica player found at https:// wolfram.com/player/,buttochangeorexecutethecode,aMathematicalicense,found athttps:\\wolfram.com\mathematica\,isrequired. AbasicundergraduatecoursewouldneedtocoverChaps.1,2,3,4,5,and6.After that,thecoursecangoinmanydirectionsdependingupontheinterestofthestudentand professor.Forapplicationsofanisotropicmaterials,Chaps.9and12shouldbeadded.For thestudentwishingtodevelopsoftwaretools,Chaps.7,8,11,and13wouldbehelpful, butfamiliaritywithprogrammingwouldbeneededforthesechapters.Chapter10covers experimentalmeasurementsofmaterialproperties.Chapter14wouldbeappropriatefor moreadvancedseniororgraduatestudentsfamiliarwithLagrangians.Formoreadvanced students,Chaps.1,2,3,4,5,and6 couldbeomittedandtheapplicationsinChap.7and onwardapproachedimmediately.Chapters15and16areincludedtomaketheconnec- tionofthisapproachtolinearelasticityandclassicalfiniteelasticityandwouldalsobe appropriateforseniorundergraduateorgraduatestudents. Appendix A derives the mapping between the fixed coordinate system of the simulationandtheexperimental coordinate system usedtodefine anisotropy prop- erties.AppendixBprovidesadescriptionofGram-SchmidtQRDwhichisthebasis oftheanisotropicinvariantsfoundinChap.12.AppendixCprovidesaquickreview of Euler-Lagrange equations in multiple dimensions for those students with some familiaritywithLagrangians.AppendixDprovidesthecodeofanexampleshowing thatfiniteelementtechniquesalsosolvetheequationsoffiniteelasticity.AppendixE provides a list 50 “projects”, each of which would be appropriate for a class assignment or an undergraduate or master’s thesis depending upon the project. Thesemaybeused“asis”orasastartingpointforastudent’sownprojectideas. Pelzer,SC,USA HumphreyHardy Contents 1 GettingReady(MostlyReview). . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 LinearAlgebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Scalars,Vector,andMatrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 AdditionandSubtractionofVectors. . . . . . . . . . . . . . . . . . . . . . . 3 MultiplicationofaScalarTimesaVector. . . . . . . . . . . . . . . . . . . . 3 MultiplicationofVectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 AdditionandSubtractionofMatrices. . . . . . . . . . . . . . . . . . . . . . . 5 AScalarTimesaMatrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 MultiplicationofMatrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 MultiplicationofaMatrixTimesaVector. . . . . . . . . . . . . . . . . . . 6 TransposeofaMatrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 InverseofaMatrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 LengthofaVector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 AVectorFieldandMatrixField. . . . . . . . . . . . . . . . . . . . . . . . . . 8 AMatrixTimesaVectorField. . . . . . . . . . . . . . . . . . . . . . . . . . . 8 AMatrixFieldTimesaVectorField. . . . . . . . . . . . . . . . . . . . . . . 9 Calculus-BasedPhysics1Review. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Newton’sLawsinEquationForm. . . . . . . . . . . . . . . . . . . . . . . . . 9 Force,Work,andEnergy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Miscellaneous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 TheDifferenceBetweenPoint,PointVector, andaGeneralVector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 MaterialProperties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 IsotropicandAnisotropicMaterials. . . . . . . . . . . . . . . . . . . . . . . . 12 HomogeneousandNon-homogeneousMaterials. . . . . . . . . . . . . . . 12 TaylorExpansionandPhysicalInterpretation. . . . . . . . . . . . . . . . . 12 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 ix x Contents 2 Deformations. . . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . .. . . . . . . .. 17 AMap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 MathematicsofaMapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 TheApplicationofaMapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 Force-EnergyRelationships. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. 43 Springs. . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. 43 Young’sModulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 InternalForces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 EnergyfromSurfaceForces. . . .. . . . . . . . . . . . .. . . . . . . . . . . . . .. 47 EquationofMotioninTermsofEnergy. . . . . . . . . . . . . . . . . . . . . . . 53 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5 IsotropicMaterials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 RotationsandTranslations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 RotationalInvariants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6 MinimizingEnergy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 SpringModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Discrete3DModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Continuous3DModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7 Simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 UserInput. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 DefineNodesandTheirConnectivity. . . . . . . . . . . . . . . . . . . . . . . . . 77 PositionBoundaryConditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 ForceBoundaryConditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 CalculateInitialVolumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 CalculateDeformationEnergyperUnitInitialVolume. . . . . . . . . . . . 81 DefineVariableList. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Gravity. . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. 83 Go. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 SimulatingIncompressibleMaterials. . . . . . . . . . . . . . . . . . . . . . . 84 ScalinginSimulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8 Quasi-staticSimulationExamples. . . . . . . . . . . . . . . . . . . . . . . . . . 89 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 SingleGridStudy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.