Green Energy and Technology Muhammad Sultan Takahiko Miyazaki Editors Energy-Ef ficient Systems for Agricultural Applications Green Energy and Technology Climate change, environmental impact and the limited natural resources urge scientificresearchandnoveltechnicalsolutions.ThemonographseriesGreenEnergy and Technology serves as a publishing platform for scientific and technological approaches to “green”—i.e. environmentally friendly and sustainable—technolo- gies. While a focus lies on energy and power supply, it also covers “green” solu- tions in industrial engineering and engineering design. Green Energy and Tech- nology addresses researchers, advanced students, technical consultants as well as decision makers in industries and politics. Hence, the level of presentation spans frominstructionaltohighlytechnical. **IndexedinScopus**. **IndexedinEiCompendex**. Moreinformationaboutthisseriesathttps://link.springer.com/bookseries/8059 · Muhammad Sultan Takahiko Miyazaki Editors Energy-Efficient Systems for Agricultural Applications Editors MuhammadSultan TakahikoMiyazaki DepartmentofAgriculturalEngineering, DepartmentofAdvancedEnvironmental FacultyofAgriculturalSciences ScienceandEngineering,Faculty andTechnology ofEngineeringSciences BahauddinZakariyaUniversity KyushuUniversity Multan,Pakistan Fukuoka,Japan ISSN1865-3529 ISSN1865-3537 (electronic) GreenEnergyandTechnology ISBN978-3-030-86393-7 ISBN978-3-030-86394-4 (eBook) https://doi.org/10.1007/978-3-030-86394-4 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents Maisotsenko-CycleAssistedDesiccantDehumidificationSystem ConfigurationsforAgriculturalProductStorage ..................... 1 MuhammadH.Mahmood,MuhammadSultan,andTakahikoMiyazaki DesiccantDehumidificationCoolingSystemforPoultryHouses inMultan(Pakistan) ............................................... 19 MuhammadAleem,MuhammadSultan,MuhammadH.Mahmood, andTakahikoMiyazaki Evaporative Cooling and Desiccant Dehumidification Air ConditioningOptionsforLivestockThermalComfort ................ 43 HafizS.Ullah, MuhammadSultan, MuhammadH.Mahmood, HadeedAshraf,MuhammadIshaq,andTakahikoMiyazaki Desiccant Dehumidification System for Storage of Fruits andVegetables .................................................... 65 MuhammadIshaq, MuhammadSultan, MuhammadAleem, MuhammadBilal, HafizS.Ullah, MuhammadH.Mahmood, andTakahikoMiyazaki Zero-EnergyCoolChamberforTomatoStorage ...................... 85 MuhammadKhalid,MuhammadH.Mahmood,MuhammadSultan, MuhammadN.Ashraf,andTakahikoMiyazaki EvaporativeandDesiccantAir-ConditioningSystemsforWet Markets .......................................................... 101 MuhammadN.Ashraf,MuhammadH.Mahmood,MuhammadSultan, MuhammadKhalid,andTakahikoMiyazaki v Maisotsenko-Cycle Assisted Desiccant Dehumidification System Configurations for Agricultural Product Storage MuhammadH.Mahmood,MuhammadSultan,andTakahikoMiyazaki Abstract Agricultural products storage and postharvest losses are linked with optimaltemperaturehumidityconditions.Inthisregard,desiccantair-conditioning (DAC) technology is investigated due to its ability to control the temperature and humidity distinctly. Six kinds of evaporative cooling-assisted DAC system config- urations are thermodynamically investigated using heat/mass transfer balance for climatic conditions of Fukuoka (Japan). In case of S-II,S-IV,and S-VI configura- tions,therearenodirectevaporativecooler(DEC)inregenerationairstream.These configurationsprovidedhigherdehumidificationwithlessregenerationheatdueto provisionofregenerationairstreamtoheatexchangerathighdrybulbandlowdew pointtemperatures.SystemconfigurationS-Vachievedhighercoolingcapacityand thermalCOPduetoconsiderationofDEConregenerationairstreamwithoutconsid- eringindirectevaporativecooleronsupplyairstream.Threeefficientconfigurations (S-II,S-IV,andS-V)arefurtherevaluatedforagriculturalproductstorageandother applications.TheS-IIconfigurationachieveslatentloadatregenerationtemperature of 80 °C; however, the modification of two-stage cooling is suggested in S-II to achievethesensibleloadforstorageofagriculturalproducts.Itcanalsoemployfor greenhouseairconditioningevenatlowregenerationtemperaturedependingupon thetypeandgrowthstageofthecrop. · · Keywords Desiccantdehumidification Evaporativecooling Systems · · configurations Agriculturalproductstorage Thermodynamicanalyses B M.H.Mahmood·M.Sultan( ) FacultyofAgriculturalSciences&Technology,DepartmentofAgriculturalEngineering, BahauddinZakariyaUniversity,BosanRoad,Multan60800,Pakistan e-mail:[email protected] M.H.Mahmood e-mail:[email protected] T.Miyazaki DepartmentofAdvancedEnvironmentalScienceandEngineering,FacultyofEngineering Sciences,KyushuUniversity,Fukuoka816–8580,Japan e-mail:[email protected] ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2022 1 M.SultanandT.Miyazaki(eds.),Energy-EfficientSystemsforAgriculturalApplications, GreenEnergyandTechnology,https://doi.org/10.1007/978-3-030-86394-4_1 2 M.H.Mahmoodetal. Nomenclature φ Slopeofenthalpyline h φ Slopeofdehumidificationline deh AC Airconditioning COP Thermalcoefficientofperformance[–] DAC Desiccantair-conditioning DEC Directevaporativecooling DC Desiccantmaterial ε Effectiveness[–] HX Heatexchanger MEC Maisotsenkocycleindirectevaporativecooler PA Processair RH Relativehumidity[%] SA Supplyair T Temperature[°C] X Humidityratio[g/kg-DA] Subscripts i Inletcondition o Outletcondition reg Regeneration wb Wetbulb dp Dewpoint 1 Introduction Energy-efficient, environmental-friendly, and low-cost agricultural storage is a burningissueoftwenty-firstcenturyduetoelevatedpostharvestlosses(PHL).PHL aregenerallydescribedasthelossesofqualityandquantityofagriculturalproducts (fruitsandvegetables)[1].Agriculturalproductlossesaregloballyreportedashigh as50%[1,2],outofwhich54%and46%haveoccurredduringproduction,posthar- vesthandling,storage,andprocessing,distribution,consumption,respectively[2–4]. PostharvestlifeofproductsismostlyextendedbycombatingPHLthroughcoldstor- ages [5]. The vapor compression refrigeration/air-conditioning (VAC) systems are employedintoday’scoldstoragesfortheprovisionofstorageconditions(tempera- tureandrelativehumidity)toagriculturalproducts.Thesesystemscontrolthestorage temperature (T) precisely but the relative humidity (RH) indirectly [6]. The VAC systemshavecertainthermodynamicandstoragelimitationsotherthanconsuming Maisotsenko-CycleAssistedDesiccantDehumidificationSystem… 3 higherenergyandcausingenvironmentaldeterioration.Bothlimitationsincludeless supply of fresh air, anaerobic respiration, poor ventilation, chilling injury, discol- oration,etc.[1,5–7].TheexcessiveaccumulationofCO (poorventilation)results 2 indetrimentaleffectsonstoredproducts[1,5,6,8–10].Ontheotherhand,thermally drivendesiccantair-conditioning(DAC)systemhasabilitytodistinctlycontrolthe temperature and relative humidity [11, 12]. Such distinctive control is crucial for thequalitative,nutritive,andquantitativestorageofagriculturalproducts[1,5–7]. Theoptimalstoragezoneofsomefreshagriculturalproductsisestablishedonthe psychrometricchart[1,13].Thiszoneisfurthercomparedwithgreenhousegrowth [14]andhumanthermalcomfort[15–17]conditionsasshowninFig.1[1,13–17]. ItisapparentfromFig.1thattherequirementofTandRHisdifferentinsaidappli- cations.Therefore,differentvariantsofDACconsistofdesiccantdehumidification and/orevaporativecoolingareinvestigatedforthepurpose. In this study, four configurations of DAC system are proposed and thermody- namicallyinvestigatedincomparisonwithtwobasicconfigurations.Thedesiccant dehumidification performance of all proposed system configurations is evaluated bythecontrolstrategyutilizingexperimentallyvalidatedslopeofdehumidification line.However,thesensibleloadofairconditioningisdeterminedbyexperimentally validated correlation, and fundamental thermodynamic expressions. The efficient DACconfigurationsarefurtherpsychrometricallyanalyzedforagriculturalproduct storageincomparisonwithhumanthermalcomfortandgreenhouseairconditioning. Greenhouse growth conditions [14] Agricultural products storage [1,13] Human thermal comfort [15-17] Fig.1 Establishmentofagriculturalproductstoragezone,humanthermalcomfort,andgreenhouse growthconditionsonpsychrometricchart 4 M.H.Mahmoodetal. 2 ProposedSystemsandResearchMethodology Batch-typeDACsystemconsistsoftwodesiccant(DC)unit,aheatexchanger(HX), aMaisotsenkocycleindirectevaporativecooler(MEC),adirectevaporativecooler (DEC),andheatsourcewhichisshowninFig.2.Accordingly,fourconfigurationsof DACsystemareproposedandthermodynamicallyinvestigatedincomparisonwith two basic configurations. The basic system configurations are labeled as System-I (S-I) and System-II (S-II) [5]. The proposed system configurations are termed as System-III (S-III), System-IV (S-IV), System-V (S-V), and System-VI (S-VI) in thisstudy.Thebasic[5]andproposedsystemconfigurationscommonlycontaintwo desiccantunitsandaheatsource.However,theothercomponentsareusedalterna- tivelyinthesystemconfigurations.Twounitsofdesiccantareusedtoenabletheir switching during regeneration and dehumidification. The schematics of proposed configurationsalongwithpsychrometricrepresentationsareshowninFig.3a–d.It is worthy to mention that system configurations (S-I to S-IV) employ the MEC to achievethesensibleloadofAC.Incontrastwithconventionalindirectevaporative coolingmethods,theMECutilizesnoveldewpointevaporativecoolingconception viaMaisotsenkocycle[12].Therefore,MEChasanabilitytocooltheairbelowits wetbulbtemperatureandapproachestothecorrespondingdewpoint[12].Referring toFig.2,theworkingprincipleoftheproposedsystemcanbebrieflyexplainedas: theambient/processair(1)passedthroughdesiccantandbecomedehumidifiedwhen exits at condition (2). The dehumidified air (2) is initially cooled by HX followed byMECwhichexitsatconditions(3)and(4),respectively.Thesupplyair(SA)at condition(4)canbeusedfortherelevantapplication.Thedesiccantsarerequiredto beregeneratedfortheircyclicusage.Therefore,theworkingairatcondition(5/1) initially passes through the DEC (6) followed by HX (7). HX is used to recover the heat of adsorption of the dehumidified air. The warm working air at condition (7) is further heated by the heat source. The hot working air (8) at certain regen- erationtemperaturepassesthroughthedesiccantfortheirregeneration.Finally,the regenerationair(9)isexhaustedtotheatmosphere. Thedetailedmethodologyadoptedfortheanalysesofproposedsystemsisshown inFig.4.Whentheambient/processairpassesthroughthedesiccant,itbecomesdehu- midifiedandconsequentlyitstemperatureincreasesandrelativehumiditydecreases. Regeneration air Working Working Working Working air (hot and humid) air (hot) air (warm) air (cool) (ambient conditions) DC-2 HS DEC Heat source X Desiccant H Agri. DC-1 MEC products Process air Dehumidifiedair Sensibly Supply storage (ambient conditions) cool air air Fig.2 Schematicofbatch-typedesiccantair-conditioningsystem