ebook img

Emerging trends in computational biology, bioinformatics, and systems biology : algorithms and software tools PDF

670 Pages·2015·2.87 MB·English
by  Arabnia
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Emerging trends in computational biology, bioinformatics, and systems biology : algorithms and software tools

4 Discussion 47 6 5 f=0.5(cid:176) 4 f=1.0(cid:176) f=1.5(cid:176) 3 2 λ Mean flow resistance 1 0 0 2 4 6 8 1 0 Axial distance (Z ) FIGURE3.5 Variationofmeanflowresistancewithaxialdistancefordifferentvaluesofthetaperangle. 1 1 0.5 0.5 0 0 r/R r/R (cid:150)0.5 (cid:150)0.5 (cid:150)1 (cid:150)1 1 2 3 4 5 1 2 3 4 5 ( a ) z ( b ) z FIGURE3.6 Streamlinesfordifferentvaluesof (cid:4) (a) (cid:4) … 0.5 0 ,(b) (cid:4) … 2 0 . Theinfluenceofthetaperangle( (cid:4) )onthestream-linepatternhasbeenanalyzed for a given value of n … 1 :4, K … 1 :2, (cid:5) … 0 :1, A … 0 :5, (cid:1) 2 … 0 :5, Q … 1 :0 and s (cid:1) t … 88 ∘,andshownin Figure3.6 .Itisobserved thatthe valueofstream function decreases asthe taper angle ( (cid:4) )increases. 48 CHAPTER3 BiologicalStudyonPulsatileFlowofHerschel-BulkleyFluid 5 CONCLUSION Themainobjectiveofthisinvestigationwasstudyingtheproblemofpulsatileflow ofblood(Herschel-Bulkleyfluid)throughataperedarterialstenosis.Aperturbation technique was adopted to study the flow. The analytical expressions for velocity, flowrate,wallshearstress,andmeanflowresistancewereobtained,andtheresults depicted ingraphs.Using the finite volume technique,the quasi-steady,nonlinear, coupled,implicit system ofdifferentialequationshasbeensolvednumericallyand theaxialvelocitycomputed.Itisverifiedthattheerrorbetweentheaxialvelocities obtainedbythepresentperturbationmethodandthenumericaltechniquebecomes less than 1.052% for the values of (cid:1) 2 between 0.0 and 1.0. Furthermore, the error becomesmorethan 9.0% when (cid:1) 2 isgreaterthan 2.10. enWhhetowflsicstriteacarcheardseesprexinsrmteof (cid:1) 2 ,ethtenesprontibaurrtpe sltsureeidncicohitwethsltsurendoufinrheotrspepa( rkaanSdan,haatlmaHe,0620 0720 .)e,ncHerousontiicedprdeciincothwirseithdanerthrfuonisarmpcoiss-ceneun ,rysasogonlas (cid:1) 2 < 0.1.r,hertFuirhetsontiicedpreardlivaenwhethsldnoeyRermbnu islalsm( < )10encsihetlhaoutrSermbnu (cid:1) isyituninirhet.esysalantBurouchoaprapis leabicplapenevtorgearldooblelssvedanterademosldnoeyRs.ermbnueOnofethstmo leabrkmaretsiermofethtenesprontibaurrtpeemhescisatthitisryveelabitsutoyan alicatemthsmaelodmofdooblowflinesubtthwirmfoiundanrmfoninunososcrnsioctse edarmpcotohetselodmdpelovedebyrsheot( ianuratChdan,mysaaragalnnPo;8619 ystoeArdans,osGra,7219b;7219rkaanSdana,thlamaHe,0620;0720,arnkSa1120 ). Thetheoreticallycomputedvelocityprofileswerecomparedwiththeexperimen- taldata,anditwasobservedthatbloodbehaveslikeaHerschel-Bulkleyfluidrather than Power-law or Bingham fluid. The increase in the taper angle ( (cid:4) ) leads to a decreaseintheflowrate,wallshearstress,andresistancetoflow.Itisevidentthat for abnormal hearts, an increase in shear stress on the blood vessel could be very dangerous, as it can result in paralysis or ultimate death. The resistance to flow is oneofthephysiologicallyimportantflowvariablestobeinvestigatedbecauseitindi- cates whether the required amount of blood supply to vital organs is ensured ( Ponalagusamy, 2007, 2012; Chaturani andPonnalagarsamy, 1984 ). It is well establishedthat hemodynamicfactors (such aswall shear stress, flow resistance) play a key role in the development and progression of arterial diseases ( Fry, 1973 ). Caro et al . (1971) experimentally demonstrated that during the initial stageofarterialdisease,theremaybeanimportantintercorrelationbetweenathero- genesisanddetailedcharacteristicsofbloodflowthroughthedamaged,diseased,or otherwise affected artery. Keeping in view the importance of hemodynamic and rheologic factors inthe understanding ofblood flow and arteriosclerostic diseases, itmaybesaidthattheimportantresultsobtainedinthisanalysiscouldbehelpfulto acquire knowledge regarding the characteristics of blood flow. Hence, the present investigationcouldbeusefulforanalyzingthebloodflowthroughatubeofnonuni- form cross section, which inturn could leadtothe development ofnew diagnostic tools for the effective treatment of patients suffering from cancer, hypertension, myocardial infarction, stroke, and paralysis. References 49 Zamir (2000) pointed out that the oscillatory nature of pulsatile flow of blood prompts other forces, apart from driving and retarding forces in the case of steady flow, andothervariablesandtheheatandmasstransportthroughendothelialcells lying in the inner layer of the vessel wall is very much altered when viscoelastic properties of blood and its vessel wall have been taken into account. When artery walls are viscoelastic, a 10% variation in the artery radius over a cardiac cycle is typicallyobservedandtheshearstressatthewallisprimarilyaffectedbytheradial wallmotionincomparisonwiththatofrigidarteries. BugliarelloandSevilla(1970) and BugliarelloandHayden(1963) haveexperimentallyobservedthatthereexistsa cell-free plasma layer near the wall when blood flows through arteries. It is well understood that blood consists of a suspension of a variety of cells. Hookes et al . (1972) pointed out that the microrotation and spinning velocity of blood cells increase flow resistance and wall shear stress. In view of their experiments and theaforementionedarguments,itispreferabletorepresenttheflowofbloodthrough arteries with their viscoelastic nature by a two-layered model instead of one layer and the rheology of blood as a micropolar viscoelastic fluid while investigating therealisticmathematicalmodeloninvestigatingbloodflow.Hence,amodesteffort willbemadetoinvestigate theproblem ofblood flowbyincorporating thefactors mentioned in this chapter (two or three factors at a time, since it is impossible to considerallthefactorssimultaneously)andthenumericalfindingswillbepublished in the future. REFERENCES Aroesty,J.,Gross,J.F.,1972a.Themechanicsofpulsatileflowinsmallvessel-I,CassonThe- ory.Microvasc.Res.4,1(cid:150)12. Aroesty,J.,Gross,J.F.,1972b.Pulsatileflowinsmallbloodvessels-I,CassonTheory.Bior- heology9,33(cid:150)43. Bugliarello,G.,Hayden,J.W.,1963.Detailedcharacteristicsoftheflowofbloodinvitro.J. Rheol.7,209(cid:150)230. Bugliarello,G.,Sevilla,J.,1970.Velocitydistributionandothercharacteristicsofsteadyand pulsatilebloodflowinfineglasstubes.Biorheology17,85(cid:150)107. Caro,C.G.,Fitzgerald,J.M.,Schroter,R.C.,1971.Atheromaandarterialwall:observation, correlationandproposalofasheardependentmasstransfermechanismofatherogenesis. Proc.Roy.Soc.Lond.B177,109(cid:150)159. Chakravarthy,S.,Mandal,P.K.,2000.Twodimensionalbloodflowthroughtaperedarteries understenoticconditions.Int.J.NonLinearMech.35,779(cid:150)793. Chaturani,P.,Ponnalagarsamy,R.,1983.Dilatencyeffectsofbloodonflowthrougharterial stenosis.In:ProceedingsoftheTwentyEighthCongressoftheIndianSocietyofTheo- reticalandAppliedMechanics.IITKharagpur,India,pp.87(cid:150)96. Chaturani,P.,Ponnalagarsamy,R.,1984.Analysisofpulsatilebloodflowthroughstenosed arteriesanditsapplicationstocardiovasculardiseases.In:Proceedingsof13thNational Conference on Fluid Mechanics and Fluid Power (FMFP-1984). REC, Tiruchirappalli, India,pp.463(cid:150)468. 50 CHAPTER3 BiologicalStudyonPulsatileFlowofHerschel-BulkleyFluid Chaturani, P.,Ponnalagarsamy,R.,1986.PulsatileflowofCasson(cid:146)sfluidthroughstenosed arterieswithapplicationstobloodflow.Biorheology23,499(cid:150)511. Dash,R.K.,Jayaraman,G.,Mehta,K.N.,1999.Flowinacatheterizedcurvedarterywithste- nosis.J.Biomech.32,49(cid:150)61. Dwivedi,A.P.,Pal,T.S.,Rakesh,L.,1982.Micropolarfluidmodelforbloodflowthrougha smalltaperedTube.IndianJ.Techn.20,295(cid:150)299. Fry,D.L.,1973.Responsesofthearterialwalltocertainphysicalfactors:inatherogenesis: initiatingfactors.CibaFound.Symp.12,93(cid:150)125. Hookes,L.E.,Nerem,R.M.,Benson,T.J.,1972.Amomentumintegralsolutionforpulsatile flowinarigidtubewithandwithoutlongitudinalvibration.Int.J.Eng.Sci.10,989(cid:150)1007. How, T.V., Black, R.A., 1987. Pressure losses in non-Newtonian flow through rigid wall taperedtubes.Biorheology24,337(cid:150)351. Mandal,P.K.,2005.Anunsteadyanalysisofnon-Newtonianbloodflowthroughtaperedarter- ieswithstenosis.Int.J.NonLinearMech.40,151(cid:150)164. Oka,S.,1973.Pressuredevelopmentinanon-Newtonianflowthroughataperedtube.Bior- heology10,207(cid:150)212. Oka,S.,Murata,T.,1969.Theoryofthesteadyslowmotionofnon-Newtonianfluidsthrougha taperedtube.Jpn.J.Appl.Phys.8,5(cid:150)8. Ponalagusamy, R., 1986. Blood Flow Throug h Stenosed uTbe. PhD thesis, II,T Bmobay, India. Ponalagusamy, R., 2007. Blood flow through an artery with mild stenosis: a two-layered model,differentshapesofstenosesandslipvelocityatthewall.J.Appl.Sci.7,1071(cid:150)1077. Ponalagusamy,R.,2012.Mathematicalanalysisoneffectofnon-Newtonianbehaviorofblood on optimal geometry of microvascular bifurcation system. J. Franklin Inst. 349,2861(cid:150)2874. Ponnalagarsamy,R.,Kawahara,M.,1989.Afiniteelementanalysisofunsteadyflowsofvis- coelasticfluidsthroughchannelswithnon-uniformcross-sections.Int.J.Numer.Meth. Fluid.9,1487(cid:150)1501. Rohlf,K.,Tenti,G.,2001.TheroleoftheWomersleynumberinpulsatilebloodflow:athe- oreticalstudyoftheCassonmodel.J.Biomech.34,141(cid:150)148. Sacks, A.H., Raman, K.R., Burnell, J.A., Tickner, E.G., 1963. Auscultatory Versus Direct Pressure Measurements for Newtonian Fluids and for Blood in Simulated Arteries, VIDYAReport#119,Dec.30. Sankar,D.S.,2011.Two-phasenon-linearmodelforbloodflowinasymmetricandaxisym- metricstenosedarteries.Int.J.NonLinearMech.46,296(cid:150)305. Sankar,D.S.,Hemalatha,K.,2006.PulsatileflowofHerschel-Bulkleyfluidthroughstenosed arteries(cid:150)amathematicalmodel.Int.J.NonLinearMech.41,979(cid:150)990. Sankar,D.S.,Hemalatha,K.,2007.PulsatileflowofHerschel-Bulkleyfluidthroughcatheter- izedarteries-amathematicalmodel.Appl.Math.Model.31,1497(cid:150)1517. ScottBlair,G.W.,Spanner,D.C.,1974.AnIntroductiontoBiorheology.ElsevierScientific PublishingCompany,Amsterdam,Oxford,pp.1(cid:150)163. Womersley,J.R.,1955.Methodforthecalculationofvelocity,rateofflowandviscousdragin thearterieswhenthepressuregradientisknown.J.Physiol.127,553(cid:150)562. Zamir,A.,2000.ThePhysicsofPulsatileFlow.Springer-Verlag,NewYork. CHAPTER 4 k Hierarchical -Means: A Hybrid Clustering Algorithm and Its Application to Study Gene Expression in Lung Adenocarcinoma Mohammad ShabbirHasanand Zhong-HuiDuan DepartmentofComputerScience,CollegeofArtsandSciences,UniversityofAkron, Akron,USA 1 INTRODUCTION GeneproductssuchasproteinsorRNAarecreatedfromtheinheritableinforma- tioncontainedinagene(HunterandHolm,1992).Traditionalmolecularbiology focuses on studying individualgenes in isolation fordetermininggenefunctions. However, it is not suitable for determining complex gene interactions or for explaining the nature of complex biological processes due to the large number of genes. For this purpose, examining the expression pattern of a large number of genes in parallel is required (Michaels et al., 1998). With the advancement of large-scale transcription profiling technology, DNA microarrays have become a useful tool that allows the analysis of the gene expression pattern at the genome level (Greshametal., 2008). In genetic-mapping studies, DNAmicroarrays have beenwidelyusedonpolymorphismsbetweenparentalgenotypesandhavefacili- tatedthediscoveryofgeneexpressionmarkers(Greshametal.,2008;Wangetal., 2009). Due to its importance, efficient algorithms are necessary to analyze the DNA microarray data set accurately (Hasan, 2013). Studies have showed that a group of genes with similar gene expressions are likely to have related gene functions (Mount, 2004). Therefore, how to find the genes that share similar expressionpatternsacrosssamplesisanimportantquestionthatisfrequentlyasked in the DNA microarray studies (Qin et al., 2014). Clustering, which is a useful technique to constitute unknown groupings of objects (Kaufman and Rousseeuw, 2009), has become an important part of gene expression data analysis (Qin et al., 2014; Eisen et al., 1998). By investigating theclustersofgeneshavingsimilarexpressionpatternsacrosssamples,researchers 51 EmergingTrendsinComputationalBiology,Bioinformatics,andSystemsBiology #2015ElsevierInc.Allrightsreserved. 52 CHAPTER4 Hierarchicalk-Means:AHybridClusteringAlgorithmandIts Application to Study Gene Expression in Lung Adenocarcinoma can elucidate gene functions, genetic pathways, and regulatory circuits. Clustering helpstofindadistinctpatternforeachcluster,aswellasmoreinformationabout functional similarities and gene interactions within the cluster (Hasan and Duan, 2014). For clustering DNA microarray data, a good number of algorithms have beendevelopedthatincludek-means(Tavazoieetal.,1999),hierarchicalcluster- ing (Eisen et al., 1998; Luo et al., 2003; Wen et al., 1998), self-organizing maps (Tamayo et al., 1999; T€or€onen et al., 1999; He et al., 2003), support vector machines (Brown et al., 2000), Bayesian networks (Friedman et al., 2000), and fuzzy logic approach (Woolf and Wang, 2000). In addition to these algorithms, there are others that use genomic information, along with gene expression data, to improve clustering efficiency. Algorithms that fall into this category include an ontology-driven clustering algorithm (Wang et al., 2005) and the ones that use information about TS2 upstream regions of the coding sequences and gene expression profiles to get more biologically relevant clusters (Holmes and Bruno, 2000; Barash and Friedman, 2002; Kasturiet al., 2003). Amongtheexistingclusteringalgorithms,k-meansandhierarchicalclustering algorithms are the most commonly used. k-means is computationally faster than hierarchicalclusteringandproducestighterclustersthanthehierarchicalclustering algorithm. On the other hand, the hierarchical clustering algorithm computes a complete hierarchy of clusters and hence is more informative than k-means. Despite these advantages, both of these algorithms suffer from some limitations. Theperformanceofk-meansclusteringdependsonhoweffectivelytheinitialnum- berofclusters(i.e.,thevalueofk)isdetermined,andtheadvantageofhierarchical clustering comes at the cost of low efficiency. Moreover, being computationally expensive, both of these algorithms impede the wide use of these algorithms in gene expression data analysis (Garai and Chaudhuri, 2004; Ushizawa et al., 2004;Bolshakovaetal.,2005).Asasolutiontothisproblem,acombinedapproach was proposed by Chen et al. (2005), who first applied the k-means algorithm to determinethekclustersandthenfedtheseclustersintothehierarchicalclustering techniquetoshortenthemergingclustertimeandgenerateatreelikedendrogram. However, this solution still suffers from the limitation of determining the initial value for k (Hasan, 2013; Hasan and Duan, 2014). In this chapter, we propose a new algorithm, hierarchical k-means, that com- bines the advantages of both k-means and the hierarchical clustering algorithm to overcome their limitations. Combining different algorithms to overcome their own limitations and produce better results is a popular approach in research (Che et al., 2011, 2012; Hasan et al., 2012). In this proposed algorithm, initially weappliedthehierarchicalclusteringalgorithmandthenusedtheresulttodecide the initial number of clusters and fed this information into k-means clustering to obtainthefinalclusters.Sincesimilargeneexpressionprofilesindicatesimilarity in their gene functionalities (Azuaje and Dopazo, 2005), after applying the proposedalgorithmtothemicroarraydatasetoflungadenocarcinomausinggene ontology(GO)annotations,weexploredthechangeintheenrichmentofmolecular functionalities of the genes of each cluster for normal tissue and KRAS-positive 2 Methods 53 tissues.Ourresultsshowedthatineachcluster,genesweregroupedtogetherbased ontheirexpressionpatternandmolecularfunctions,whichindicatethecorrectness of this proposed algorithm. 2 METHODS k-means clustering algorithm: For clustering genes, k-means clustering, a well- knownmethodforclusteranalysispartitionexpressionlevelsofngenesintokclus- ters,sothatthetotaldistancebetweenthecluster’sgenesanditscorrespondingcen- troid,representativeofthecluster,isminimized.Inshort,thegoalistopartitionthen genes into k sets S, i¼1, 2…, k in order to minimize the within-cluster sum of i squares(WCSS), defined as X X WCSS¼ k n jjxj(cid:2)cjj2, (4.1) j¼1 i¼1 i j wherejjxj(cid:2)cjj2 providesthe distancebetween a gene and the cluster’s centroid. i j In this clustering algorithm, the initial cluster centroids are selected randomly. After that, each gene is assigned to the closest cluster centroid. Then each cluster centroidismovedtothemeanofthepointsassignedtoit.Thisalgorithmconverges whentheassignmentsnolongerchange.Algorithm4.1showsthepseudocodeofthe k-means clustering algorithm. Hierarchicalclusteringalgorithm:Ingeneclustering,hierarchicalclusteringis amethodofclusteranalysisthatbuildsahierarchyofclusters(asitsnameindicates). This clusteringmethodorganizes genes intotree structuresbasedontheir relation. Thebasicideaistoassembleasetofgenesintoatree,wheregenesarejoinedbyvery shortbranchesiftheyhaveverygreatsimilaritytoeachother,andbyincreasingly long branches as their similarity decreases. The approaches for hierarchical clustering can be classified into two groups: agglomerativeanddivisive.Theagglomerativeapproachisa“bottom-up”approach, where each gene starts in its own cluster and pairs of clusters are merged as one moves up the hierarchy. On the other hand, divisive approach is a “top-down” approach,whereallgenesstartsinoneclusterandsplitsareperformedrecursively asonemovesdownthehierarchy.Inthischapter,wemainlyfocusontheagglom- erativeapproach for hierarchical clustering. Thefirststepinhierarchicalclusteringistocalculatethedistancematrixbetween thegenesinthedataset.Theclusteringstartsoncethismatrixofdistancesiscom- puted. The agglomerative hierarchical clustering technique consists of repeated cycleswherethetwoclosestgeneshavingthesmallestdistancearejoinedbyanode known as a pseudonode. The two joined genes are removed from the list of genes being processed and replaced by the pseudonode that represents the new branch. Thedistancesbetweenthispseudonodeandallotherremaininggenesarecomputed, 54 CHAPTER4 Hierarchicalk-Means:AHybridClusteringAlgorithmandIts Application to Study Gene Expression in Lung Adenocarcinoma ALGORITHM4.1 k-means 2 Methods 55 andtheprocessisrepeateduntilonlyonenoderemains.Notethatthereareavariety of ways to compute distances while dealing with a pseudonode: centroid linkage, singlelinkage,completelinkage,andaveragelinkage.Inthischapter,weuseaver- agelinkage,whichdefinesthedistancebetweentwoclustersastheaveragepairwise distancebetween genes in cluster C andC calculatedusingEq.(4.2): i j X X (cid:2) (cid:3) δðx,yÞ δ C,C ¼ x2Ci y2Cj , (4.2) i j n:n i j whereδ(x,y)istypicallygivenbytheEuclideandistancecalculatedusingEq.(4.3): vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi u utXd δðx,yÞ¼ ðx (cid:2)yÞ2: (4.3) i i i¼1 The pseudocode of agglomerative hierarchical clustering using average linkage is illustrated inAlgorithm4.2. ALGORITHM4.2 HierarchicalClustering 56 CHAPTER4 Hierarchicalk-Means:AHybridClusteringAlgorithmandIts Application to Study Gene Expression in Lung Adenocarcinoma Hierarchical k-means: In this proposed algorithm, we selected the value of k (i.e.,thenumberofclusters)inasystematicway.Initially,weusedtheagglomerative hierarchicalclusteringalgorithmforclusteringthedatasetusingaveragelinkageand thencheckedatwhatlevelthedistancebetweentwoconsecutivenodesofthehier- archywasthemaximum.Usingthisinformation,thevalueofkisdetermined,which isthenfedintothek-meansclusteringalgorithmtoproducethefinalclusters.Inboth algorithms,thePearsoncorrelationcoefficient(r)wasusedasthesimilaritymetric betweentwosamplesand1(cid:2)rwasusedasthedistancemetric.Algorithm4.3shows the pseudocode ofthe proposed algorithm. ALGORITHM4.3 Hierarchicalk-meansClustering

Description:
Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology discusses the latest developments in all aspects of computational biology, bioinformatics, and systems biology and the application of data-analytics and algorithms, mathematical modeling, and simu- lation techniques.• Di
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.