EMC of Analog Integrated Circuits ANALOGCIRCUITSANDSIGNALPROCESSINGSERIES ConsultingEditor:MohammedIsmail.OhioStateUniversity Forothertitlespublishedinthisseries,goto www.springer.com/series/7381 Jean-Michel Redouté (cid:2) Michiel Steyaert EMC of Analog Integrated Circuits Jean-MichelRedouté MichielSteyaert Dept.ElectricalEngineering(ESAT) Dept.ElectricalEngineering(ESAT) KatholiekeUniversiteitLeuven KatholiekeUniversiteitLeuven KasteelparkArenberg10 KasteelparkArenberg10 3001Leuven,Belgium 3001Leuven,Belgium [email protected] [email protected] SeriesEditor: MohammedIsmail 205DreeseLaboratory DepartmentofElectricalEngineering TheOhioStateUniversity 2015NeilAvenue Columbus,OH43210,USA ISBN978-90-481-3229-4 e-ISBN978-90-481-3230-0 DOI10.1007/978-90-481-3230-0 SpringerDordrechtHeidelbergLondonNewYork LibraryofCongressControlNumber:2009937640 (cid:2)cSpringerScience+BusinessMediaB.V.2010 Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwritten permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurposeof beingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Coverdesign:eStudioCalamarS.L. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Environmentalelectromagneticpollutionhasdrasticallyincreasedoverthelast decades. The omnipresence of (wireless) communication systems, new and various electronic appliances and the use of ever increasing frequencies, all contributetoanoisyelectromagneticenvironmentwhichactsdetrimentallyon sensitive electronic equipment. Integrated circuits constitute the beating heart ofalmostanygivenelectronicsystemnowadays:luckily,owingtotheirsmall sizes,theyarenoteasilydisturbedbyradiateddisturbances,becausetheirtiny on-chipinterconnectionsaremuchtoosmalltofunctionaseffectiveantennas. However, the ultimate contribution comes from the conducted interferences whicharepresentonthenoisyandrelativelylongprintedcircuitboardtracks, usedtoconnectandinterconnecttheintegratedcircuitsinquestion. Asidefromapollutedelectromagneticspectrum,integratedcircuitsmustbe able to operate satisfactorily while cohabiting harmoniously in the same ap- pliance,andnotgenerateintolerablelevelsofelectromagneticemission,while maintaining a sound immunity to potential electromagnetic disturbances. As different electronic systems are compactly integrated in the same apparatus, theparasiticelectromagneticcouplingbetweenthesecircuitssharingthesame signal,powerandgroundlines,isacriticaldesignparameterthatcannolonger be safely excluded from a product design flow. This dense integration level links the electromagnetic compatibility (EMC) issue of integrated circuits to the graceful coexistence between systems: as an example, Bluetooth, GSM andWiFiserviceshavetocoexistandoperateinharmonywithinthecrammed confinementofamodernmobilephone. Distinct frequency allocations provide a shield against electromagnetic in- terferences by separating the signal spectra of different systems from each other: nevertheless, the intrinsic nonlinearity of active devices may cause the demodulationofinterferingoutofbandsignals,wherebyspurioussignalstend to appear in the frequency band of the exposed circuit. Furthermore, these outofbanddisturbances mayinduce aseveredistortion ofthe wantedsignals vi Preface (which is certainly not recommended),and DC shifterrorson sensitive nodes in the respective circuit, hereby possibly driving the latter out of its correct operationmode(whichisevenlessacceptable).Analogcircuitsareinpractice moreeasilydisturbedthantheirdigitalcounterparts,sincetheydon’thavethe benefit of dealing with predefined levels which ensure an innate immunity to disturbances. The objective of the research domain presented in this book is to improve theelectromagneticimmunityofconsideredanalogintegratedcircuits,sothat theystarttofailatrelevantlyhigherconductionlevelsthanbefore. J.-M.RedoutéandM.Steyaert Contents 1. INTRODUCTION 1 1 Thepioneersofwirelesscommunication 1 2 Evolutionofawarenessofelectromagneticcompatibility 3 3 Electromagneticcompatibilityofintegratedcircuits 5 4 Scopeofthisbook 7 2. BASICEMCCONCEPTSATICLEVEL 11 1 Introduction 11 2 DefinitionofEMC,EMI,EMSandEME 12 3 Sourcesofelectromagneticinterference 14 4 Electromagnetismversusintegratedcircuitdesign 15 4.1 Electricallength 15 4.2 Nearfieldversusfarfield 17 4.3 Radiationofaconductor 19 4.4 BasicEMCantennaconcepts 20 4.5 Radiated,inducedandconducteddisturbances 22 4.6 Practicalexample 24 5 Intra-chipversusexternally-coupledEMC 27 6 Analogversusdigitalintegratedcircuits 29 7 EMCinautomotiveapplications 31 8 ImmunitymeasurementmethodsforIC’s:IEC62132 31 viii Contents 3. EMCOFINTEGRATEDCIRCUITSVERSUSDISTORTION 37 1 Introduction 37 2 RelationshipbetweenEMIresistingdesignanddistortion 39 2.1 Lineardistortion 39 2.2 Nonlineardistortion(rectification) 40 2.3 Weakandstrongnonlineardistortion 43 3 Casestudy1:diodeconnectedNMOStransistor 45 4 Casestudy2:NMOSsourcefollower 50 5 Casestudy3:NMOScurrentmirror 52 5.1 Capacitordecouplingthemirrornode 57 5.2 Low-passR-C filterinthemirrornode 58 5.3 Low-passR-C filterinthedrainofM 60 1 5.4 EMIresisting(4-transistor)currentmirror 61 5.5 EMIresisting(Wilsontotempole)currentmirror 67 5.6 ComparisonofEMIsusceptibilityofcurrentmirrors 69 6 Casestudy4:EMIsusceptibilityinESDprotections 72 6.1 WeaknonlineardistortioninESDprotections 73 6.2 StrongnonlineardistortioninESDprotections 78 6.3 ESDprotections:generalconclusions 80 7 EMIinducedDCshift 81 4. EMIRESISTINGANALOGOUTPUTCIRCUITS 83 1 Introduction 83 2 Categorizationofanalogoutputstructures 85 2.1 Common-drainoutputcircuits 85 2.2 Common-sourceoutputcircuits 88 2.3 Comparingtheelectromagneticsusceptibility 89 2.4 LargeEMIamplitudes 93 3 Casestudy1:EMIresistingDCcurrentregulator 95 3.1 EMIissuesinaclassicDCcurrentregulator 95 3.1.1 EMIissues:smallsignalanalysis 97 3.1.2 EMIissues:largesignalanalysis 99 3.1.3 DecouplingcapacitorC 100 d 3.2 DCcurrentregulatorwithahighimmunitytoEMI 102 3.3 Measurements 106 Contents ix 4 Casestudy2:EMIresistingLINdriver 107 4.1 ClassicLINdriver 111 4.1.1 Linearoperationmode 114 4.1.2 Nonlinearoperationmode 116 4.2 EMIresistingLINdrivertopology:LINdriver1 117 4.2.1 EMIpath1 118 4.2.2 EMIpath2 122 4.2.3 Slopecontrolfunction 129 4.2.4 Measurements 129 4.3 EMIresistingLINdrivertopology:LINdriver2 133 4.3.1 Smart-powermode 133 4.3.2 Slopepumpingreduction 136 4.3.3 Measurements 138 5. EMIRESISTINGANALOGINPUTCIRCUITS 141 1 Introduction 141 2 Casestudy1:electromagneticimmunityofCMOSoperational amplifiers 142 2.1 Asymmetricslewrate 145 2.2 Strongnonlinearbehavioroftheinputdifferentialpair 148 2.3 Weaknonlinearbehavioroftheinputdifferentialpair 149 2.3.1 EMIinducedoffsetinaclassicdifferentialpair 149 2.3.2 Classicdifferentialpairusingsourcedegeneration 154 2.3.3 Cross-coupleddifferentialpair 155 2.3.4 Differentialpairwithlow-passR-C filter 158 2.3.5 Improvedcross-coupleddifferentialpair 160 2.3.6 Source-buffereddifferentialpair 161 2.3.7 Comparison 169 2.4 EMIinducedoffsetmeasurementsetups 169 2.5 Measurements 177 3 Case study 2: EMI resisting instrumentation amplifier input circuit 182 3.1 Classicinstrumentationamplifierinputcircuit 183 3.2 Inputcircuitusingcurrentsourcesmodulation 189 3.3 Simulations 193
Description: