ebook img

Ellipsoidal harmonics: theory and applications PDF

476 Pages·2012·4.155 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ellipsoidal harmonics: theory and applications

ELLIPSOIDAL HARMONICS TheoryandApplications Thesphere,becauseofitshighsymmetry,iswhatmightbecalledaperfectshape. Unfortunatelynatureisimperfectandmanyapparentlysphericalbodiesarebetter representedbyanellipsoid.Consequentlyincalculationsaboutgravitational potential,forexample,sphericalharmonicshavetobereplacedbythemuchmore complexellipsoidalharmonics.Theirtheory,whichwasoriginatedinthenineteenth century,couldonlybeseriouslyappliedwiththekindofcomputationalpowerthat hasbecomeavailableinrecentyears.This,therefore,isthefirstbookcompletely devotedtoellipsoidalharmonics. Afteracompletepresentationofthetheory,appliedtopicsaredrawnfrom geometry,physics,biosciences,andinverseproblems.Thebookcontainsclassical resultsaswellasnewmaterial,includingellipsoidalbiharmonicfunctions,the theoryofimagesinellipsoidalgeometry,geometricalcharacteristicsofsurface perturbations,andvectorsurfaceellipsoidalharmonics,whichexhibitaninteresting analyticalstructure.Extendedappendicesprovideeverythingoneneedstosolve formallyboundaryvalueproblems.End-of-chapterproblemscomplementthe theoryandtestthereader’sunderstanding. Thebookservesasacomprehensivereferenceforappliedmathematicians, physicists,engineers,andforanyonewhoneedstoknowthecurrentstateoftheart inthisfascinatingsubject.Specificchapterscanserveasteachingmaterial. EncyclopediaofMathematicsandItsApplications Thisseriesisdevotedtosignificanttopicsorthemesthathavewideapplicationin mathematicsormathematicalscienceandforwhichadetaileddevelopmentofthe abstracttheoryislessimportantthanathoroughandconcreteexplorationofthe implicationsandapplications. BooksintheEncyclopediaofMathematicsandItsApplicationscovertheir subjectscomprehensively.Lessimportantresultsmaybesummarizedasexercises attheendsofchapters.Fortechnicalities,readerscanbereferredtothe bibliography,whichisexpectedtobecomprehensive.Asaresult,volumesare encyclopedicreferencesormanageableguidestomajorsubjects. ENCYCLOPEDIAOFMATHEMATICSANDITSAPPLICATIONS AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridge UniversityPress.Foracompleteserieslistingvisit www.cambridge.org/mathematics. 93 G.Gierzetal.ContinuousLatticesandDomains 94 S.R.FinchMathematicalConstants 95 Y.JabriTheMountainPassTheorem 96 G.GasperandM.RahmanBasicHypergeometricSeries,2ndedn 97 M.C.PedicchioandW.Tholen(eds.)CategoricalFoundations 98 M.E.H.IsmailClassicalandQuantumOrthogonalPolynomialsinOneVariable 99 T.MoraSolvingPolynomialEquationSystemsII 100 E.OlivieriandM.EuláliaVaresLargeDeviationsandMetastability 101 A.Kushner,V.LychaginandV.RubtsovContactGeometryandNonlinearDifferentialEquations 102 L.W.BeinekeandR.J.Wilson(eds.)withP.J.CameronTopicsinAlgebraicGraphTheory 103 O.J.StaffansWell-PosedLinearSystems 104 J.M.Lewis,S.LakshmivarahanandS.K.DhallDynamicDataAssimilation 105 M.LothaireAppliedCombinatoricsonWords 106 A.MarkoeAnalyticTomography 107 P.A.MartinMultipleScattering 108 R.A.BrualdiCombinatorialMatrixClasses 109 J.M.BorweinandJ.D.VanderwerffConvexFunctions 110 M.-J.LaiandL.L.SchumakerSplineFunctionsonTriangulations 111 R.T.CurtisSymmetricGenerationofGroups 112 H.Salzmannetal.TheClassicalFields 113 S.PeszatandJ.ZabczykStochasticPartialDifferentialEquationswithLévyNoise 114 J.BeckCombinatorialGames 115 L.BarreiraandY.PesinNonuniformHyperbolicity 116 D.Z.ArovandH.DymJ-ContractiveMatrixValuedFunctionsandRelatedTopics 117 R.Glowinski,J.-L.LionsandJ.HeExactandApproximateControllabilityforDistributed ParameterSystems 118 A.A.BorovkovandK.A.BorovkovAsymptoticAnalysisofRandomWalks 119 M.DezaandM.DutourSikiricGeometryofChemicalGraphs 120 T.NishiuraAbsoluteMeasurableSpaces 121 M.PrestPurity,SpectraandLocalisation 122 S.KhrushchevOrthogonalPolynomialsandContinuedFractions 123 H.NagamochiandT.IbarakiAlgorithmicAspectsofGraphConnectivity 124 F.W.KingHilbertTransformsI 125 F.W.KingHilbertTransformsII 126 O.CalinandD.-C.ChangSub-RiemannianGeometry 127 M.Grabischetal.AggregationFunctions 128 L.W.BeinekeandR.J.Wilson(eds.)withJ.L.GrossandT.W.TuckerTopicsinTopological GraphTheory 129 J.Berstel,D.PerrinandC.ReutenauerCodesandAutomata 130 T.G.FaticoniModulesoverEndomorphismRings 131 H.MorimotoStochasticControlandMathematicalModelling 132 G.SchmidtRelationalMathematics 133 P.KornerupandD.W.MatulaFinitePrecisionNumberSystemsandArithmetic 134 Y.CramaandP.L.Hammer(eds.)BooleanModelsandMethodsinMathematics,Computer Science,andEngineering 135 V.BerthéandM.Rigo(eds.)Combinatorics,AutomataandNumberTheory 136 A.Kristály,V.D.RadulescuandC.VargaVariationalPrinciplesinMathematicalPhysics, Geometry,andEconomics 137 J.BerstelandC.ReutenauerNoncommutativeRationalSerieswithApplications 138 B.CourcelleandJ.EngelfrietGraphStructureandMonadicSecond-OrderLogic 139 M.FiedlerMatricesandGraphsinGeometry 140 N.VakilRealAnalysisthroughModernInfinitesimals 141 R.B.ParisHadamardExpansionsandHyperasymptoticEvaluation 142 Y.CramaandP.L.HammerBooleanFunctions 143 A.Arapostathis,V.S.BorkarandM.K.GhoshErgodicControlofDiffusionProcesses 144 N.Caspard,B.LeclercandB.MonjardetFiniteOrderedSets 145 D.Z.ArovandH.DymBitangentialDirectandInverseProblemsforSystemsofIntegraland DifferentialEquations 146 G.DassiosEllipsoidalHarmonics 147 L.W.BeinekeandR.J.Wilson(eds.)withO.R.OellermannTopicsinStructuralGraphTheory GabrielLamé(1795–1870) FrenchengineerandMathematician ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS Ellipsoidal Harmonics Theory and Applications GEORGE DASSIOS UniversityofPatras,Greece CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,SãoPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521113090 (cid:2)c GeorgeDassios2012 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2012 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Dassios,G.(George) Ellipsoidalharmonics:theoryandapplications/GeorgeDassios. pagescm.–(Encyclopediaofmathematicsanditsapplications;146) Includesbibliographicalreferencesandindex. ISBN978-0-521-11309-0(Hardback) 1.Lamé’sfunctions. I.Title. QA409.D37 2012 (cid:3) 515.53–dc23 2011051233 ISBN978-0-521-11309-0Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Prologue pagexi 1 Theellipsoidalsystemanditsgeometry 1 1.1 Confocalfamiliesofsecond-degreesurfaces 1 1.2 Ellipsoidalcoordinates 8 1.3 Analyticgeometryoftheellipsoidalsystem 13 1.4 Differentialgeometryoftheellipsoidalsystem 17 1.5 Sphero-conalandellipto-sphericalcoordinates 22 1.6 Theellipsoidasadyadic 29 1.7 Problems 35 2 Differentialoperatorsinellipsoidalgeometry 39 2.1 Thebasicoperatorsinellipsoidalform 39 2.2 EllipsoidalrepresentationsoftheLaplacian 42 2.3 ThethermometricparametersofLamé 43 2.4 SpectraldecompositionoftheLaplacian 45 2.5 Problems 48 3 Laméfunctions 49 3.1 TheLaméclasses 49 3.2 Laméfunctionsofclass K 51 3.3 Laméfunctionsofclasses L and M 54 3.4 Laméfunctionsofclass N 58 3.5 DiscussionontheLaméclasses 60 3.6 Laméfunctionsofthesecondkind 66 3.7 Problems 67 4 Ellipsoidalharmonics 70 4.1 Interiorellipsoidalharmonics 70 4.2 Harmonicsofdegreefour 73 4.3 Exteriorellipsoidalharmonics 77 4.4 Surfaceellipsoidalharmonics 78 viii Contents 4.5 Orthogonalityproperties 79 4.6 Problems 86 5 ThetheoryofNivenandCartesianharmonics 89 5.1 TherootsoftheLaméfunctions 89 5.2 ThetheoryofNivenharmonics 94 5.3 Thecharacteristicsystem 97 5.4 FromNivenbacktoLamé 102 5.5 TheKlein–Stieltjestheorem 104 5.6 Harmonicsofdegreefourrevisited 106 5.7 Problems 108 6 Integrationtechniques 109 6.1 Integralsoveranellipsoidalsurface 109 6.2 Thenormalizationconstants 113 6.3 Thenormalizationconstantsrevisited 117 6.4 Problems 121 7 Boundaryvalueproblemsinellipsoidalgeometry 124 7.1 Expansionofthefundamentalsolution 124 7.2 Eigensourcesandeigenpotentials 127 7.3 Theclosurerelation 129 7.4 Green’sfunctionanditsimagesystem 131 7.5 TheNeumannfunctionanditsimagesystem 143 7.6 Singularitiesofexteriorellipsoidalharmonics 156 7.7 Problems 160 8 Connectionbetweenharmonics 163 8.1 Geometricalreduction 163 8.2 Sphero-conalharmonics 169 8.3 Differentialformulaeforharmonicfunctions 173 8.4 Sphero-conalexpansionsofinteriorellipsoidalharmonics 180 8.5 Integralformulaeforharmonicfunctions 190 8.6 Sphero-conalexpansionsofexteriorellipsoidalharmonics 195 8.7 Problems 200 9 Theellipticfunctionsapproach 203 9.1 TheWeierstrassapproach 203 9.2 TheJacobiapproach 207 9.3 TheWeierstrass–Jacobiconnection 210 9.4 IntegralequationsforLaméfunctions 213 9.5 Integralrepresentationsforellipsoidalharmonics 219 9.6 Problems 224 10 Ellipsoidalbiharmonicfunctions 226 10.1 Eigensolutionsoftheellipsoidalbiharmonicequation 226

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.