RESEARCHARTICLE Decoupled systems on trial: Eliminating bottlenecks to improve aquaponic processes HendrikMonsees1,2*,WernerKloas1,2,SvenWuertz1,2 1 Leibniz-InstituteofFreshwaterBiologyandInlandFisheries,Berlin,Germany,2 AlbrechtDanielThaer- InstituteofAgriculturalandHorticulturalSciences,HumboldtUniversityBerlin,Berlin,Germany *[email protected] Abstract a1111111111 a1111111111 a1111111111 Inclassicalaquaponics(coupledaquaponicsystems,1-loopsystems)theproductionoffish a1111111111 inrecirculatingaquaculturesystems(RAS)andplantsinhydroponicsarecombinedinasin- a1111111111 gleloop,entailingsystemiccompromisesontheoptimalproductionparameters(e.g.pH). Recentlypresenteddecoupledaquaponics(2-loopsystems)havebeenawardedforelimi- natingmajorbottlenecks.Inapilotstudy,productioninaninnovativedecoupledaquaponic systemwascomparedwithacoupledsystemand,asacontrol,aconventionalRAS, OPENACCESS assessinggrowthparametersoffish(FCR,SGR)andplantsoveranexperimentalperiodof Citation:MonseesH,KloasW,WuertzS(2017) 5months.Solublenutrients(NO3--N,NO2--N,NH4+-N,PO43-,K+,Ca2+,Mg2+,SO42-,Cl2- Decoupledsystemsontrial:Eliminating andFe2+),elementalcompositionofplants,fishandsludge(N,P,K,Ca,Mg,Na,C),abiotic bottleneckstoimproveaquaponicprocesses.PLoS factors(temperature,pH,oxygen,andconductivity),fertilizerandwaterconsumptionwere ONE12(9):e0183056.https://doi.org/10.1371/ determined.Fruityieldwas36%higherindecoupledaquaponicsandpHandfertilizerman- journal.pone.0183056 agementwasmoreeffective,whereasfishproductionwascomparableinbothsystems. Editor:P.Pardha-Saradhi,UniversityofDelhi, Theresultsofthispilotstudyclearlyillustratethemainadvantagesofdecoupled,two-loop INDIA aquaponicsanddemonstratehowbottleneckscommonlyencounteredincoupledaquapo- Received:March3,2017 nicscanbemanagedtopromoteapplicationinaquaculture. Accepted:July30,2017 Published:September28,2017 Copyright:©2017Monseesetal.Thisisanopen accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which Introduction permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal Aquaponicsystemshavebeenpresentedasasustainableandresourcefriendlydevelopmentof authorandsourcearecredited. commonrecirculatingaquaculturesystems(RAS).Here,accumulatednutrientsandwaterof DataAvailabilityStatement:Allrelevantdataare RASarerecycledbyanintegratedhydroponic(soilless)plantproductionunit[1].Nevertheless withinthepaperanditsSupportingInformation majordrawbacksbecameobviousincomparisontoboth,professionalaquacultureaswellas files. hydroponicplantproduction. Funding:Thisworkreceivedsupportfromthe Classicalaquaponicsystems,commonlyreferredtoascoupledor1-loopaquaponicsys- Elsa-NeumannScholarship-HMrecievedhis tems,weredescribedalreadymorethan30yearsago[2,3].Here,theaquacultureunitand paymentforhisPhDthroughtheElsa-Neumann thehydroponicunitarearrangedinasingleloopwhereprocesswaterisdirectedfromthe Scholarship.https://www.hu-berlin.de/de/ aquaculturetothehydroponicunitandback.Inevitably,suchsystemsprovidethesamewater forschung/szf/wiss_nachwuchs/wn_nafoeg_html. qualityforboth,fishandplants,whichnecessarilyrepresentacompromiseintherearingcon- Thefundershadnoroleinstudydesign,data ditionsforeachproductionline.Probably,theneedtocompromiseandthelackofcontrolon collectionandanalysis,decisiontopublish,or preparationofthemanuscript. theproductionarethekeyobstacleswhycommercialapplicationsarescarceandthemajority PLOSONE|https://doi.org/10.1371/journal.pone.0183056 September28,2017 1/18 Decoupledaquaponicsontrial Competinginterests:Theauthorshavedeclared ofaquaponicsystemsaresmall-scaleunits,patronizinglycalled"backyardaquaponics",in thatnocompetinginterestsexist. schoolsforeducationpurposesorinresearchfacilities[4]. Currenteffortsaimatdecoupledsystemsarrangedinseparateloopswhereprocesswateris mainlyrecirculatedwithintherespectiveunit,therebyallowingabettercontrolofthespecies- specificrequirements[5,6].Here,waterisrecirculatedwithintherespectiveunit(RASor hydroponics)andwaterlossduetoevapotranspirationoftheplantsiscompensatedon- demand,directingprocesswaterfromthefishtanksviaaone-wayvalveintothehydroponic reservoir.Thus,waterfromthehydroponicunitisnotredirectedintothefishtanksandcondi- tionswithinthehydroponicunitcanbemanagedseparately,ifnecessary.Tofurtherimprove waterefficiency,[5]describedagreenhouseproductionequippedwithanadditionalaircondi- tioningsystemwithanintegratedcoldtraptocondensatewaterthatisevapotranspiratedby plantsaswellasfromtheRAS,redirectingthecondensate(purewater)totheRASunit. Ahighdiversityoffishspecieshasbeenproducedinaquaponics,amongthemcatfish,carp perch,seabassand,mostprominently,tilapia[2,7–10].Thenumberofestablishedcropplants mayevenbehigher,includingstrawberries,tomatoes,basilandlettuce[5,11,12].Here tomatoesareconsideredasmoredifficulttogrow,sincenutrients,especiallypotassium,are requiredinbigquantities[13].Additionally,tomatoesareamongthemostimportantvegeta- blesworldwidebothineconomicaltermsandinconsumption[14]. Inprinciple,themostimportantnutrientsderivedfromthefishrearingandsubsequently utilizedbythegrowingplantcropsarenitrogen(N),phosphorus(P)andpotassium(K). Amongthem,dissolvednitrogenisprimarilyconsideredforbalancingfishandplantproduc- tionduringsystemdesign.Ideally,fishprovidethenitrogentosustaintheplantcropgrowth withouttheneedforadditionalnitrogenfertilization.Mostofthisnitrogenoriginatesfromthe proteinmetabolismofthefishandisexcretedviathegillsasammonia[15].Duetothehigh toxicityofammonia,biofilters(movingbed,tricklingfilter)areintegratedinthefishunitto supportmicrobialnitrification,convertingammoniatonitrate.Foroptimaloperationthis reactionrequiresapH(cid:21)7[16].Sincetheprocessofnitrificationresultsinthereleaseofpro- tonsduringammoniaoxidation[17],RASoperatorshavetocounteractthedecreaseinpHby theadditionofe.g.limestone[5].Ontheotherhand,duringplantproduction,mostnutrients becomeavailableatapHof5.5–6.5[18].Thus,incommercialhydroponicproduction,pHis controlledbytheadditionofacids,e.g.nitricacid[19].Consequently,incoupledaquaponics compromiseshavetobetakenwithregardtotheproductionparametersincludingacom- monlyreportedpH7[9].Obviously,thisisnotidealforneitherfishnorplantsandspecies- specificadjustmentbyadecouplingofbothunitsisdesirable.Also,fromananimalwelfare perspective,additionoffertilizersinsituationsofnutrientimbalancesiscontroversialdueto thefactthatfishareintentionallyconfrontedwithsuboptimalorevennegativerearingcondi- tions.Recently,conceptsfordecoupledsystemshavebeenpresented[1,5].Still,directcom- parisonofdecoupledandcoupledsystemsislacking. Toourknowledgethisisthefirststudycomparingcoupledanddecoupledaquaponics underrealisticproductionconditions.Theresultsofthispilotstudydemonstratethemain advantagesofdecoupledaquaponicsandhighlightthebottlenecksofclassicalaquaponicsys- tems.Furthermore,practicalandtheoreticalrecommendationsshouldserveasguidancefor futuresystemdesignandbestpractices. Materialandmethods Aquaponicsystem ExperimentswereconductedattheaquaponicresearchfacilityoftheLeibniz-Instituteof FreshwaterEcologyandInlandFisheries(Berlin,Germany).Briefly,threeidenticalRASwitha PLOSONE|https://doi.org/10.1371/journal.pone.0183056 September28,2017 2/18 Decoupledaquaponicsontrial Fig1.Schematicillustrationofclassical(coupled)anddecoupledaquaponics.(a):Classicalaquaponic systemconsistingofaRAS(blue:rearingtanks,clarifierandbiofilter)directlyconnectedtothehydroponic unit(green:NFT-trays).WaterisconstantlycirculatedfromRAStohydroponicandbacktoRAS.(b): DecoupledaquaponicsystemconsistingofaRASconnectedtothehydroponicunit(withadditionalreservoir) viaone-way-valve.Waterisseparatelyrecirculatedineachsystemandwaterisjustsuppliedon-demandfrom RAStothehydroponicunit,butnotback. https://doi.org/10.1371/journal.pone.0183056.g001 totalvolumeof16.5m3each(culturevolume6.8m3,fourseparaterearingtanksof1.7m3 each)werestockedwithNiletilapia(Oreochromisniloticus,weight:Ø68g)andpurchasedata commercialsupplier(KirschauerAquakulturen,Germany). ThestudywascarriedoutincompliancewiththeGermanlegislationasauthorizedbythe RegionalOfficeforHealthandSocialAffairsBerlin(permit#:ZH114).Forbiofiltration(nitri- fication)eachRASwasequippedwithamovingbedfilter(2m3)providingasubstratesurface ofapproximately1350m2.InthefirstRAS(A)adrumfilter(meshsize:100μm)wasusedto removesuspendedsolids,representingthemostfrequentlyusedtechnologyusedincommer- cialRAS.Here,nohydroponicunitwasintegratedandthissystemwasusedascontrol(con- ventionalaquaculturereference).Inthetworemaining,coupled(RASC)anddecoupled (RASD)systems(Fig1),suspendedsolidremovalwasachievedwithaclarifier(1.5m3),which isoftenusedinaquaponicapplicationsduetotheenergyandwaterefficiency. Here,fiveNFT-trays(l45cm(cid:3)30cm,h:28cmeach)werearrangedashydroponicunit, integratedtotheRAS(C,D).RASDwasconnectedtothehydroponicunitsviaone-way- valve,providingadecoupled,two-loopaquaponicsystem[5].Asaconsequence,waterfrom RASDwasonlydirectedondemandtotherespectivehydroponicunit,butnotredirectedto theRAS.RASCwasoperatedasasingle-loopaquaponicsystem(coupled,classicalapproach) wherefivehydroponicunitswereconnectedtotheRASwithaby-passusingapump(10L/ min)installedinthepumpsump.Topreventcloggingandfoulingoftheplantrootsbysus- pendedsolidsoriginatingfromtheRAS,asmallfilter(Eheim,Germany)wasinterposedand cleanedonaregularbasis.Overtheexperimentalperiod,fishwerefedacommercialfood (AllerFloat37/102mmand3mm,Emsland-AllerAqua,Germany).Temperature,pHand oxygenweredetermineddaily(HQ40dmulti,HachLangeGmbH,Germany);pHwas PLOSONE|https://doi.org/10.1371/journal.pone.0183056 September28,2017 3/18 Decoupledaquaponicsontrial regulatedwithCa(OH) .Selectednutrients(NO --N,NO --N,TAN,PO 3-,K+,Mg2+,Ca2+, 2 3 2 4 SO 2-,Cl-andFe2+)inthewaterweredeterminedspectrophotometrically(DR3900Hach 4 Lange,Berlin,Germany)withtherespectivekit. Tomatoplants Tomatoplants(Solanumlycopersicum,variety:Pannovy)originatedfromacompanyspecial- izedonhydroponicvegetables(SchwantelandGmbH,Germany).Theyweregrowninrock woolcubes(10cm(cid:3)10cm)andhadameanheightof42.1cm(±4.3cm).PerRAS,15tomato plantswererandomlydistributedtothetraysoftherespectivehydroponicunit.Watercon- sumptionandfertilizersupplywasaccordingtoTable1.Thefertilizershadthefollowingcom- position:KristaKPlus(Yara,Germany):13.7%totalN(13.7%NO -N)and46.3%K O; 3 2 CalciNit(Yara,Germany):15.5%totalN(14.4%NO -Nand1.1%NH -N)and26.3%calcium 3 4 oxide(CaO).MannaLinMSpezialisaNPKfertilizerwith18%totalN(11%NO -Nand7% 3 NH -N),12%P O ,18%K O,2%MgOandtraceelementsincludingFe,Mn,Zn,B,Cu,and 4 2 5 2 Mo.PartlyKHCO wasalsousedtoincreasethepotassiumconcentration. 3 Elementalanalysis Overthefivemonthexperimentalperiod,samplesofleavesandtomatoesweresampledat fourtimepoints(inMay,July,AugustandSeptember).Plantswerechosenrandomly,per samplingpointandsystemfivereplicatesoftwoleavesweretaken(alwaysthefifthfullydevel- opedleave)aswellasfivereplicatesoftwofullyripetomatoes.Sampleswerefreezedriedprior toelementalanalysis.Totalphosphorus(TP),magnesium(Mg),calcium(Ca),potassium(K), sodium(Na)weredeterminedbyICP-OES(inductivelycoupledplasmaopticalemission spectrometry;iCAB6000,ThermoFisherScientificInc.,USA)afterwetdigestion(HCl37%, HNO 65%,volumetricratio1:3)inahighpressuremicrowaveoven(Gigatherm,Switzer- 3 land).C/Nanalysisofplantsandfishwereperformedusingfreezedried(toaconstantweight), weighedsamplesandanalyzedinaVarioELsystem(ElementarAnalysensystemeGmbH,Ger- many).Compositionofsludge(n=4)andfish(n=4)wasdeterminedaccordingly. Table1. Plantgrowth(freshweightoffruit,leave,root,stem),fertilizersupplementationandwaterconsumptioninthehydroponicunitofthecou- pled(HydroC)anddecoupled(HydroD)aquaponicsystemafter30,63,94,122and154d. WaterconsumptionisonlyindicatedforHydroD,since HydroCiscoupledtotheRASCandisonlygivenfortheentiresystem(Table2).Rootsandstemswereonlysampledattheendoftheexperimentsandfresh weightthereforenotdetermined(n.d.)earlier. Hydroponic sampling days[d] harvest[kg] fertilizer[g] waterconsumption intervals [L] fruit leave root stem KristaK+ Calcinit MannaLinM KHCO 3 Spezial C 07.04.-06.05.15 30 0.24 11.1 n.d. n.d. 325 130 60 0 bypass 07.05.-08.06.15 63 25.90 12.4 n.d. n.d. 179 140 65 0 bypass 09.06.-09.07.15 94 13.67 12.7 n.d. n.d. 160 0 50 300 bypass 10.07.-06.08.15 122 11.41 6.4 n.d. n.d. 30 0 0 0 bypass 07.08.-07.09.15 154 39.66 21.1 5.8 25.7 0 0 0 0 bypass total 154 90.9 63.7 5.8 25.7 694 270 175 300 bypass D 07.04.-06.05.15 30 1.6 11.7 n.d. n.d. 325 130 60 0 634 07.05.-08.06.15 63 41.2 11.2 n.d. n.d. 179 140 65 0 990 09.06.-09.07.15 94 27.2 7.4 n.d. n.d. 160 0 50 300 964 10.07.-06.08.15 122 18.6 6.0 n.d. n.d. 30 0 0 0 983 07.08.-07.09.15 154 34.9 11.7 2.3 17.1 0 0 0 0 670 total 154 123.5 48.0 2.3 17.1 694 270 175 300 4961 https://doi.org/10.1371/journal.pone.0183056.t001 PLOSONE|https://doi.org/10.1371/journal.pone.0183056 September28,2017 4/18 Decoupledaquaponicsontrial Determinationoftotalsolids(TS)andtotalsuspendedsolids(TSS)inthe RAS FortheevaluationoftheweeklylossofTSduetocleaningoftheclarifier(RASCandD), water-sludgemixturefromtheclarifier(1.5m3)wascollectedthreetimeswithintheexperi- mentalperiodina2m3tankandhomogenizedwithapump.Persamplingfivesubsamples weretakenin10Lcontainerseach.Aliquotsoffreshsludge(n=15)werefreezedriedtodeter- minethedryweight:wetweightratio. ForTSS,watersamples(100ml)weretakenintriplicateattheinflowofafishtankatthe beginningoftheexperiment,after3monthsandattheendoftheexperimentalperiod.Briefly, sampleswerefilteredthroughpre-weighted0.45μmCAmembranefilters(GEHealthcare, UnitedKingdom),freezedriedtoaconstantweightandweighed. Estimatedfateofnitrogen Theschematicillustrationofthefateofnitrogenwasdevelopedaccordingtotheresultsofthe presentstudyandliteraturevalues.Literaturevaluesconsideredwerethosefor%Nofproteins [20,21],theexcretionofN[22–24],nitrification[16],uncontrolleddenitrification[25]and nitrateuptakeoftomatoes[26,27]. Results Plantgrowth,fertilizersupplementationandwaterconsumption Plantgrowth,fertilizersupplementedandwaterconsumptioninthehydroponicunitsofthe coupledanddecoupledaquaponicsystem(HydroC,HydroD)arepresentedinTable1.Over theentireexperimentalperiodof154d,moretomatoeswereharvestedfromHydroD(123.5 kg)thanfromHydroC(90.9kg),correspondingtoa36%highertomatoyieldinthedecou- pledsystem.Incontrast,31%moreleaves(63.7kg),60%moreroots(5.8kg)and50%more stembiomass(5.8kg)wereharvestedfromthecoupledsystem.Atthesametime,fertilizer supplementationwasidenticalinbothsystems(Table1).Waterconsumptionwaslowestin thebeginningandattheendoftheexperimentwith1.4LperplantperdayinHydroD. Betweenthe07.05andthe06.08.2015,waterconsumptionwashighestandrangedbetween2.0 and2.4Lperplantperday. FishgrowthandRASperformance Fishgrowth,feedconversionratios(FCR)andspecificgrowthrates(SGR)arepresentedin Table2andwereinthesamerangeamongallthreeRAS(A,C,D)overtheentireexperimental period.TheaverageFCRineachsystemrangedbetween1.2and1.3,increasingovertime from1.0to1.6,identifyinganincreasedfeedconversioninlargerfish.Ineachsystem,the averageSGRwas1.0whereasacontinuousdecreasedownto0.5(AandD)and0.6(C)was observedtowardstheendoftheexperiment.Waterconsumptionwasalsocomparable betweentheaquaponicsystems.Still,intheaquaculturecontrolRAS(A)thewaterconsump- tionwashigherat5–6%RASd-1.Also,inbothaquaponicsystems,additionoflimestonewas similarandincreasedfrom0.5kgto6.1kgwithintheexperimentalperiod.Approximately 22%lesslimestonewasusedintheaquaculturecontrolRASAtoregulatethepHtocompara- blelevels.Initial,finalweightandsubsequentlyoverallweightgainrevealednodifference (<2%)betweenfishunits.Overtheentireperiodmortalities(<1%)wereverylowinall systems. PLOSONE|https://doi.org/10.1371/journal.pone.0183056 September28,2017 5/18 Decoupledaquaponicsontrial ocon- stoneon[kg] 0.9 1.3 2.4 2.4 5.1 2.1 0.7 1.7 4.1 3.1 6.0 5.6 0.5 1.4 4.0 3.3 6.1 5.3 dedt limeadditi 1 1 1 d a e % n andlimestoand154d. wateronsumption[-1RASd] 3.0 5.4 5.7 6.2 6.1 5.3 3.1 2.4 2.7 3.6 2.9 2.9 3.2 2.3 2.7 3.5 2.6 2.8 n22 c o1 mpti94, on waterconsuafter30,63, waterconsumpti[m] 14.92 29.33 29.33 28.51 32.02 134.12 15.24 13.05 13.86 16.47 15.25 73.87 15.91 12.52 13.86 16.07 13.59 71.95 R),mortalities,control(RASA) mortalities[%]ofstockingend 0.1 0.2 0.3 0.1 0.4 0.8 0.0 0.4 0.0 0.3 0.3 0.7 0.2 0.1 0.1 0.2 0.1 0.4 Ce o(Foth SGR 1.5 1.2 1.2 0.8 0.5 1.0 1.4 1.1 1.3 0.8 0.6 1.0 1.4 1.1 1.3 0.8 0.5 1.0 onratiparedt FCR 1.0 1.2 1.1 1.3 1.6 1.3 1.1 1.2 1.1 1.3 1.5 1.2 1.0 1.3 1.0 1.3 1.6 1.3 sim verco eedkg] 37.2 58.2 75.6 71.0 83.7 25.6 37.2 58.2 75.6 71.0 83.7 25.6 37.2 58.2 75.6 71.0 83.7 25.6 onD) f[ 3 3 3 SGR),foodcystem(RAS fishgrowth-1][kgmonth 37.4 48.8 67.4 52.9 51.3 257.7 34.2 46.6 71.3 56.2 55.1 263.4 35.6 43.2 72.3 53.7 52.2 256.9 ate(nics end wthruapo RAScking[kg] 104.3 153.1 220.5 273.4 324.6 101.0 147.6 218.9 275.1 330.2 102.4 145.5 217.9 271.5 323.7 oq o gra st d,specificdecoupled RASstockingstart[kg] 66.9 104.3 153.1 220.5 273.4 66.8 101.0 147.6 218.9 275.1 66.8 102.4 145.5 217.9 271.5 ed fn da eeC) e ntoffRAS tankvolum3[m] 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 02 u( 0 ocking,amothecoupled stockedtanks[n] 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 pone.0183056.t nthestunitsof days[d] 30 63 94 122 154 154 30 63 94 122 154 154 30 63 94 122 154 154 1/journal. 2.DetailsoHinthefish samplingintervals 07.04.-06.05.15 07.05.-08.06.15 09.06.-09.07.15 10.07.-06.08.15 07.08.-07.09.15 total/average 07.04.-06.05.15 07.05.-08.06.15 09.06.-09.07.15 10.07.-06.08.15 07.08.-07.09.15 total/average 07.04.-06.05.15 07.05.-08.06.15 09.06.-09.07.15 10.07.-06.08.15 07.08.-07.09.15 total/average doi.org/10.137 Tabletrolp RAS A C D https:// PLOSONE|https://doi.org/10.1371/journal.pone.0183056 September28,2017 6/18 Decoupledaquaponicsontrial Table3. Rearingconditions(dissolvedoxygen(O ),pH,temperatureandconductivity)inthefish(RAS)andhydroponic(Hydro)unitsofaconven- 2 tionalaquaculturereference(A),acoupled(C)andadecoupled(D)aquaponicsystem,assessedovertheexperimentalperiodof154days(07.04– 07.09.2015). experimentalsystem experimentalperiod days[d] O [mgL-1] pH temperature[˚C] conductivity[mScm-1] 2 RASA 07.04.-07.09.15 154 6.4(±1.0) 7.3(±0.3) 26.8(±1.5) 1.1(±0.1) RASC/HydroC 07.04.-07.09.15 154 6.5(±1.1) 7.1(±0.3) 26.8(±1.0) 1.5(±0.3) RASD 07.04.-07.09.15 154 6.3(±1.1) 7.2(±0.3) 27.3(±1.2) 1.5(±0.3) HydroD 07.04.-07.09.15 154 8.2(±0.4) 6.4(±0.7) 24.3(±1.5) 3.2(±1.0) https://doi.org/10.1371/journal.pone.0183056.t003 Rearingconditionsinthefishandthehydroponicunits RearingconditionsarepresentedinTable3.Thedissolvedoxygenconcentrationwashigh (6.3–6.5mgL-1)andwithinthesamerangebetweenRASA,CandD.Overtheexperimental periodahigheraverageoxygenconcentrationwasrecordedinHydroD(8.2mgL-1)compared toHydroC(6.5mgL-1)andallfishunits.Similarly,thepHwasinthesamerangebetween fishunitsRASA,RASC/HydroCandRASD(pH7.1–7.4),butsubstantiallylowerinthe decoupledHydroD(pH6.4).TheaveragetemperatureinallthreeRASandHydroCoscillated around27˚C.InHydroDaloweraveragetemperature(24.3˚C±1.7)wasobserved.Thecon- ductivityrangedbetween1.1mScm-1and1.5mScm-1inthethreeRASandHydroC,butwas twofoldincreasedat3.2mScm-1inHydroDcomparedtoHydroC(1.5mScm-1). DissolvednutrientsinRASandhydroponics DissolvednutrientsinRASandhydroponicsweredeterminedweeklyandarepresentedin Table4.InallthreeRAS,aconstantaccumulationofnitratewasobservedoverthe154d experimentalperiod,increasingfrom15.7–19.8mgL-1duringthefirstsamplingintervalupto 65.9–100.8mgL-1attheendoftheexperimentalperiod.InHydroD,nitrateconcentration increasedfrom98.8mgL-1NO --Ntomorethan170mgL-1fromthethirdmonthon.During 3 theentireexperimentalperiod,nitriteinallfishandhydroponicunitswasverylow((cid:20)0.1 mgL-1NO --N).Ammoniumrevealedconcentrations(cid:20)0.4mgL-1NH +-NintheRASunits 2 4 andHydroC.OnlyinHydroDamaximumof6.4mgL-1NH +-Nwasobservedatthebegin- 4 ningoftheexperimentalperiod,whichconstantlydecreasedtolowlevelscomparablethe othersystems.Inallfishandhydroponicunits,thephosphateconcentrationdecreasedto5.6– 9.6mgL-1towardstheendoftheexperimentalperiod.Still,duringthefirsttwomonths,phos- phateconcentrationsweremorethan2-foldhigherinHydroDthaninHydroC.Potassium concentrationsinbothaquaponicsystemsweregenerallyhigherthanintheRASA,butlevels inallunitsrangedbetween17and50mgL-1.Exceptionallylowpotassiumconcentrations<5 mgL-1wereonlyobservedduringthelastmonthinHydroD.Also,nosubstantialdifferences wereobservedwithrespecttothechlorideconcentrationsinthefishunitsandHydroC,rang- ingbetween29–46.5mgL-1Cl-.OnlyinHydroDanaccumulationofchloridefrom46mgL-1 to89.7mgL-1Cl-wasobserved.Sulfaterangedbetween157.5and195mgL-1,onlyinHydro Dsubstantiallyelevatedconcentrations(295–660mgL-1)wereobserved.Similarly,calcium was3-foldincreasedinHydroD(362.8–558.5mgL-1)comparedtoHydroC(119.9–148.5mg L-1).IronandmagnesiumwerewithinthesamerangebetweenallRASandHydroC;only HydroDrevealedhigherconcentrations. InFig2thedevelopmentofkeynutrients(N,P,K)ispresentedovertheexperimental periodwithrespecttorecommendedconcentrationsfortomatoproduction.InallRASsys- temstherewasageneralaccumulationofNwithoutreachingtherecommendedthreshold (dashedline).AconstantdecreaseofPandamoreorlessstableconcentrationofKwitha PLOSONE|https://doi.org/10.1371/journal.pone.0183056 September28,2017 7/18 Decoupledaquaponicsontrial d decoupledarearrange 2+-1Fe[mgL] 0.01(0.00)± 0.01(0.01)± 0.01(0.01)± 0.01(0.01)± 0.01(0.01)± 0.01(0.01)± 0.01(0.01)± 0.01(0.01)± 0.02(0.01)± 0.02(0.02)± 0.01(0.00)± 0.01(0.00)± 0.01(0.01)± 0.01(0.01)± 0.01(0.01)± 0.01(0.00)± 0.11(0.14)± 0.05(0.03)± 0.12(0.08)± 0.10(0.04)± ah ed(C)andC,sincebot --1Cl[mgL] 36.5(7.1)± 30.3(5.9)± 29.0(2.3)± 30.6(1.8)± 38.2(5.8)± 39.8(7.4)± 31.0(6.1)± 34.6(3.6)± 39.1(2.3)± 46.5(7.5)± 38(10.6)± 29.7(6.5)± 33.8(3.0)± 38.5(1.3)± 33.7(8.9)± 46.0(9.9)± 36.5(9.3)± 76.6(43.3)± 69.1(15.1)± 89.7(23.8)± plo nce(A),acouutrientsinHydr -12-SO[mgL]4 165(35.4)± 178.8(2.5)± 161.3(6.3)± 168.8(2.5)± 160(5.0)± 175(35.4)± 197.5(2.9)± 191.3(8.5)± 195(7.1)± 190(18.0)± 157.5(10.6)± 173.8(6.3)± 186.3(9.5)± 193.8(8.5)± 183.3(10.4)± 295(49.5)± 515(256.8)± 660(468.5)± 470(194.9)± 373.3(50.3)± ulturereferepondtothen 2+-1Mg[mgL] 14.1(0.0)± 21(7.7)± 17.7(3.0)± 16.3(0.9)± 16.2(1.2)± 13.8(0.7)± 21.9(7.6)± 19.4(1.8)± 19.3(1.8)± 20.4(1.3)± 14.9(0.5)± 22.9(8.2)± 19.7(1.2)± 23.4(7.3)± 19.7(0.9)± 49.5(10.6)± 36.4(9.9)± 57.3(27.2)± 56.3(21.9)± 50.1(16.9)± cs entionalaquanRASCcorre 2+-1Ca[mgL] 123.4(0.8)± 130.6(6.0)± 134.1(5.8)± 136.8(5.4)± 141.1(10.8)± 119.8(0.8)± 138.5(11.6)± 148.5(5.3)± 144.8(7.3)± 149.2(2.8)± 125.2(1.1)± 140.2(8.6)± 152.0(4.4)± 149.0(2.5)± 149.3(6.3)± 556.0(90.5)± 362.8(61.9)± 558.5(137.4)± 442.8(43.4)± 482.0(147.8)± D)ofaconv5).Nutrientsi +-1K[mgL] 22.0(1.4)± 21.6(1.8)± 19.3(4.8)± 18.7(2.1)± 17.0(1.4)± 27.8(3.9)± 28.0(2.6)± 40.8(10.6)± 38.7(19.4)± 27.3(4.0)± 22.0(3.5)± 25.4(2.9)± 40.0(10.1)± 41.7(20.8)± 29.8(2.9)± 207.5(3.5)± 41.8(30.5)± 50.0(41.4)± 24.0(25.6)± 4.2(4.4)± o1 HydroC,Hydr7.04–07.09.20 -13-PO[mgL]4 14.8(0.9)± 10.4(2.2)± 6.7(1.1)± 6.4(0.9)± 5.6(0.8)± 17.1(0.4)± 12.8(2.0)± 9.8(0.7)± 8.3(1.6)± 6.3(0.9)± 16.9(3.8)± 14.2(0.9)± 13.4(0.9)± 11.9(1.1)± 9.6(1.2)± 29.1(6.8)± 26.1(8.5)± 12.9(1.9)± 7.2(2.9)± 6.7(1.7)± oponicunits(of154days(0 -1+NH-N[mgL]4 0.12(0.06)± 0.09(0.04)± 0.16(0.16)± 0.08(0.01)± 0.07(0.04)± 0.06(0.01)± 0.04(0.01)± 0.15(0.12)± 0.06(0.01)± 0.06(0.02)± 0.03(0.01)± 0.05(0.02)± 0.12(0.19)± 0.06(0.01)± 0.05(0.02)± 3.60(0.28)± 2.25(3.03)± 0.64(0.67)± 0.08(0.05)± 0.02(0.01)± rd C,D)andhydmentalperio -1-NO-N[mgL]2 0.09(0.08)± 0.07(0.03)± 0.06(0.02)± 0.04(0.01)± 0.04(0.01)± 0.05(0.00)± 0.08(0.03)± 0.07(0.02)± 0.05(0.01)± 0.05(0.02)± 0.02(0.01)± 0.06(0.01)± 0.06(0.02)± 0.05(0.02)± 0.05(0.02)± 0.07(0.08)± 0.02(0.02)± 0.01(0.01)± 0.01(0.00)± 0.00(0.02)± A,eri h(RAStheexp -1N[mgL] (4.7)± (3.6)± (10.9)± (4.8)± (6.1)± (6.2)± (14.9)± (14.0)± (11.5)± (19.9)± (7.4)± (7.0)± (9.6)± (6.5)± (10.8)± (23.7)± (58.4)± (38.7)± (70.1)± (38.5)± 004 Table4.Dissolvednutrientsinthefis(D)aquaponicsystem,assessedoverascoupledaquaponicsystem. -RAS/HydrosamplingintervalsNO-3 A07.04.-06.05.1515.7 07.05.-08.06.1527.6 09.06.-09.07.1530.4 10.07.-06.08.1552.3 07.08.-07.09.1565.9 CHydroC07.04.-06.05.1519.8 07.05.-08.06.1536.2 09.06.-09.07.1559.2 10.07.-06.08.1565.3 07.08.-07.09.1572.8 D07.04.-06.05.1517.5 07.05.-08.06.1527.1 09.06.-09.07.1550.4 10.07.-06.08.1577.6 07.08.-07.09.15100.8 HydroD07.04.-06.05.1598.8 07.05.-08.06.15136.9 09.06.-09.07.15175.0 10.07.-06.08.15207.5 07.08.-07.09.15174.5 https://doi.org/10.1371/journal.pone.0183056.t PLOSONE|https://doi.org/10.1371/journal.pone.0183056 September28,2017 8/18 Decoupledaquaponicsontrial Fig2.Developmentofthekeynutrients(N,P,K)forplantproductioninthefish(RAS)andhydroponic(Hydro)unitsofthecoupled(RASC/ HydroC)anddecoupled(RASD,HydroD)aquaponicsystemcomparedtothecontrol(RASA)over22weeks.NutrientsinRASCcorrespondto thenutrientsinHydroCsincebotharearrangedascoupledaquaponicsystem.Recommendednutrientrequirementsfortomatoproductionare indicated(dashedline). https://doi.org/10.1371/journal.pone.0183056.g002 peakinthemiddleoftheexperimentalperiodwasobserved.Againrecommendedconcentra- tionswerenotreachedandinthecaseofKstayedfarbeyondtherecommendedthreshold.In allcasesRASAshowedthelowestconcentrationsofkeynutrientsandhighestobservedcon- centrationsoccurredinHydroD.Here,recommendedlevelsofNwereoftenreachedoreven exceeded.TheKconcentrationwasjustclosetooptimumconditionstowardsthestartof experimentsbutloweredconsiderablytowardstheendoftheexperimentalperiod.Also,dur- ingthefirstthirdoftheexperimentalperiod,thePconcentrationwasfrequentlyhigherthan inallothersystemsbutshowedthesamedecreasingtrendtowardstheend. PLOSONE|https://doi.org/10.1371/journal.pone.0183056 September28,2017 9/18 Decoupledaquaponicsontrial Table5. Elementalanalysis(ICP-OESandC/N)ofplantleavesandtomatoesharvestedfromthehydroponicunitofthecoupled(HydroC)andthe decoupled(HydroD)aquaponicsystemafter30d,63d,94d,122dand154d. Additionallydataforfishandsludgearepresented. system Experimentalperiod/date sample Ca[gkg-1] K[gkg-1] Mg[gkg-1] Na[gkg-1] P[gkg-1] N[%] C[%] C/N HydroC 07.05.-08.06.15 leaf 30.4±(1.9) 45.4±(1.3) 4.4±(0.2) 0.3±(0.0) 5.1±(0.2) 3.4(±0.1) 36.6(±0.1) 10.9(±0.5) 09.06.-09.07.15 leaf 32.4±(3.0) 40.3±(7.3) 4.8±(0.5) 0.3±(0.0) 4.4±(0.3) 3.0(±0.2) 37.5(±0.4) 12.3(±0.8) 10.07.-06.08.15 leaf 26.0±(2.3) 35.3±(2.2) 3.9±(0.2) 0.3±(0.0) 4.7±(0.3) 3.2(±0.2) 38.1(±0.3) 11.9(±0.8) 07.08.-07.09.15 leaf 34.0±(3.6) 33.2±(3.2) 3.8±(0.4) 0.4±(0.0) 4.3±(0.5) 2.6(±0.3) 37.1(±0.3) 14.2(±1.3) 07.05.-08.06.15 tomato 2.2±(1.0) 47.5±(0.2) 1.3±(0.1) 0.3±(0.0) 4.6±(0.2) 2.0(±0.1) 38.8(±0.4) 19.1(±1.3) 09.06.-09.07.15 tomato 2.1±(0.3) 41.6±(2.5) 1.4±(0.1) 0.2±(0.0) 4.3±(0.2) 1.7(±0.2) 39.9(±0.2) 24.3(±3.2) 10.07.-06.08.15 tomato 1.3±(0.3) 41.0±(1.6) 1.5±(0.0) 0.3±(0.0) 4.0±(0.5) 2.0(±0.2) 39.3(±0.3) 19.8(±1.5) 07.08.-07.09.15 tomato 1.1±(0.1) 42.0±(4.4) 1.5±(0.3) 0.3±(0.2) 4.4±(0.3) 2.0(±0.5) 39.7(±0.7) 20.3(±4.5) HydroD 07.05.-08.06.15 leaf 26.7±(4.3) 39.9±(2.4) 3.9±(0.2) 1.1±(0.1) 2.7±(0.1) 3.9(±0.1) 38.7(±0.7) 10.1(±0.4) 09.06.-09.07.15 leaf 23.1±(3.3) 46.0±(0.9) 3.2±(0.3) 1.3±(0.1) 2.6±(0.4) 3.2(±0.1) 39.1(±0.5) 12.3(±0.4) 10.07.-06.08.15 leaf 25.5±(2.8) 36.0±(1.6) 4.0±(0.2) 0.9±(0.1) 2.9±(0.2) 3.8(±0.1) 39.1(±0.6) 10.4(±0.2) 07.08.-07.09.15 leaf 26.7±(11.1) 32.8±(7.5) 3.2±(0.9) 0.7±(0.2) 2.6±(0.5) 3.2(±0.4) 38.9(±1.0) 12.2(±2.1) 07.05.-08.06.15 tomato 1.7±(0.2) 45.6±(5.2) 1.2±(0.2) 0.4±(0.0) 3.7±(0.6) 2.1(±0.4) 39.5(±0.4) 19.6(±4.3) 09.06.-09.07.15 tomato 1.3±(0.1) 36.1±(3.9) 1.3±(0.1) 0.5±(0.0) 3.1±(0.6) 2.0(±0.2) 39.4(±0.4) 20.1(±1.9) 10.07.-06.08.15 tomato 1.1±(0.4) 40.5±(2.9) 1.3±(0.1) 0.4±(0.1) 3.0±(0.8) 2.0(±0.3) 39.6(±0.1) 20.2(±2.9) 07.08.-07.09.15 tomato 1.2±(0.5) 41.5±(2.8) 1.4±(0.1) 0.4±(0.2) 3.4±(0.6) 2.1(±0.4) 39.3(±0.1) 19.0(±3.3) RASA-C-D 09.09.2015 fish 31.7(±1.0) 1.5(±0.1) 2.1(±0.1) 0.7(±0.0) 17.7(±0.5) 7.4(±0.2) 56.5(±3.3) 7.6(±0.5) RASC-D 09.09.2015 sludge 11.9(±5.8) 8.3(±0.1) 0.6(±0.1) 3.5(±0.1) 8.9(±2.8) 4.1(±0.2) 36.6(±1.0) 9.0(±0.6) https://doi.org/10.1371/journal.pone.0183056.t005 Elementalcompositionofplants,fishandsludge Ingeneral,compositionofplantleavesandtomatoesrevealednomajordifferencesofthe respectiveplantpartsbetweenHydroCandHydroD,neitherinICP-OESanalysisnorC/N ratio(Table5).OnlythephosphatecontentsoftomatoesandleaveswerelowerinHydroC comparedtoHydroD.Inaddition,sodiumconcentrationsinthefruitwereslightlyhigherin HydroDcomparedtoHydroC.Meanelementalcompositionoffishandsludgewerealso determinedandareprovidedtocompletethepictureoftheoverallaquaponicsystem. TSSandlossofsolidsinRAS TSSwasdeterminedthreetimesintriplicate(n=3)overtheexperimentalperiodforeach RAS(Fig3).Duringthefirstsamplinginterval,allthreeRAShadacomparablelowTSSof about0.75–1.15mgL-1.Thereafter,aconstantincreaseofTSSwasobservedinallRASover theexperimentalperiod,revealinghighestremovalintheRASAequippedwithadrumfilter. TowardsthelastmonthoftheexperimentalperiodTSSwashighestinRASD(6.9(±0.5))and lowestinRASA(3.6(±0.2)).TSSintheRASarrangedascoupledsystem(RASC)wasslightly lowercomparedtothedecoupledaquaponicsystem(RASD). Theremovalofsolidsintheclarifier(Table6)duetotheweeklycleaningwaswithinthe samerangebetweenthetwofishunitsRASCandRASDandrangedaround1.8–2.0gdry weight(cid:3)L-1.Fortheclarifiersused(V=1.5m3)aweeklylossof2.7–3kgoforganicmatter (dryweight)wasthuscalculatedhere. EstimatedfateofnitrogeninRASandaquaponics ForabetterestimationofnitrateaccumulationinRASandpotentialnitratesupplyofcrop plants(e.g.tomatoes)inaquaponicsperkgfeedfedtothefish,asimplifiedschematicillustra- tionofthefateofnitrogen(mainlynitrate)wasdevelopedhere(Fig4). PLOSONE|https://doi.org/10.1371/journal.pone.0183056 September28,2017 10/18
Description: