ELEMENTSOFMATHEMATICS 3 Berlin Heidelberg NewYork HongKong London Milan Paris Tokyo NICOLAS BOURBAKI ELEMENTS OF MATHEMATICS Functions of a Real Variable Elementary Theory 1 3 Originallypublishedas Fonctionsd’unevariableréelle (cid:2)cHermann,Paris,1976andNicolasBourbaki,1982 Translator PhilipSpain UniversityofGlasgow DepartmentofMathematics UniversityGardens GlasgowG128QW Scotland e-mail:[email protected] Thisworkhasbeenpublishedwiththehelp oftheFrenchMinistèredelaCultureandCentrenationaldulivre MathematicsSubjectClassification(2000):26-02,26A06,26A12, 26A15,26A24,26A42,26A51,34A12,34A30,46B03 Cataloging-in-PublicationDataappliedfor AcatalogrecordforthisbookisavailablefromtheLibraryofCongress. BibliographicinformationpublishedbyDieDeutscheBibliothek DieDeutscheBibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataisavailableintheInternetathttp://dnb.ddb.de (cid:44)(cid:54)(cid:37)(cid:49)(cid:16)(cid:20)(cid:22)(cid:29)(cid:28)(cid:26)(cid:27)(cid:16)(cid:22)(cid:16)(cid:25)(cid:23)(cid:21)(cid:16)(cid:25)(cid:22)(cid:28)(cid:22)(cid:21)(cid:16)(cid:25)(cid:3) e-ISBN-13:978-3-642-59315-4 DOI: 10.1007/978-3-642-59315-4 Springer-Verlag Berlin Heidelberg New York Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialisconcerned, specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductionon microfilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationorpartsthereofis permittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,initscurrentversion,and permissionforusemustalwaysbeobtainedfromSpringer-Verlag.Violationsareliableforprosecutionunderthe GermanCopyrightLaw. Springer-VerlagBerlinHeidelbergNewYork amemberofBertelsmannSpringerScience+BusinessMediaGmbH http://www.springer.de ©Springer-VerlagBerlinHeidelberg2004 (cid:54)(cid:82)(cid:73)(cid:87)(cid:70)(cid:82)(cid:89)(cid:72)(cid:85)(cid:3)(cid:85)(cid:72)(cid:83)(cid:85)(cid:76)(cid:81)(cid:87)(cid:3)(cid:82)(cid:73)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:75)(cid:68)(cid:85)(cid:71)(cid:70)(cid:82)(cid:89)(cid:72)(cid:85)(cid:3)(cid:79)(cid:86)(cid:87)(cid:3)(cid:72)(cid:71)(cid:76)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:21)(cid:19)(cid:19)(cid:23)(cid:3) Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply,evenin theabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantpro- tectivelawsandregulationsandthereforefreeforgeneraluse. Typesetting:bytheTranslatorandFrankHerweg,Leutershausen CoverDesign:Design&ProductionGmbH,Heidelberg Printedonacid-freepaper 41/3142db 543210 To the reader 1.TheElementsofMathematicsSeriestakesupmathematicsatthebeginning,and givescompleteproofs.Inprinciple,itrequiresnoparticularknowledgeofmathemat- icsonthereaders’part,butonlyacertainfamiliaritywithmathematicalreasoning andacertaincapacityforabstractthought.Neverthelessitisdirectedespeciallyto thosewhohaveagoodknowledgeofatleastthecontentofthefirstyearortwoofa universitymathematicscourse. 2.Themethodofexpositionwehavechosenisaxiomatic,andnormallyproceeds fromthegeneraltotheparticular.Thedemandsofproofimposearigorouslyfixed orderonthesubjectmatter.Itfollowsthattheutilityofcertainconsiderationsmay notbeimmediatelyapparenttothereaderuntillaterchaptersunlesshehasalready afairlyextendedknowledgeofmathematics. 3. The series is divided into Books and each Book into chapters. The Books already published, either in whole or in part, in the French edition, are listed be- low. When an English translation is available, the corresponding English title is mentioned between parentheses. Throughout the volume a reference indicates the Englishedition,whenavailable,andtheFrencheditionotherwise. The´orie des Ensembles (Theory of Sets) designated by E (Set Theory) Alge`bre (Algebra) 1 — A (Alg) Topologie Ge´ne´rale (General Topology) — TG (Gen. Top.) Fonctions d’une Variable Re´elle (Functions of a Real Variable) 2 — FVR (FRV) Espaces Vectoriels Topologiques (Topological Vector Spaces) — EVT (Top. Vect. Sp.) Inte´gration — INT Alge`bre Commutative (Commutative Algebra) 3 — AC (Comm. Alg.) Varie´tes Diffe´rentielles et Analytiques — VAR Groupes et Alge`bres de Lie (Lie Groups and Lie Algebras) 4 — LIE (LIE) The´ories Spectrales TS In the first six Books (according to the above order), every statement in the textassumesasknownonlythoseresultswhichhavealreadydiscussedinthesame 1 Sofar,chaptersItoVIIonlyhavebeentranslated. 2 Thisvolume! 3 Sofar,chaptersItoVIIonlyhavebeentranslated. 4 Sofar,chaptersItoIIIonlyhavebeentranslated. VI TO THE READER chapter,orinthepreviouschaptersorderedasfollows:E;A,chaptersItoIII;TG, chaptersItoIII;A,fromchapterIVon;TG,fromchapterIVon;FVR;EVT;INT. FromtheseventhBookon,thereaderwillusuallyfindapreciseindicationofits logicalrelationshiptotheotherBooks(thefirstsixBooksbeingalwaysassumedto beknown). 4.However,wehavesometimesinsertedexamplesinthetextwhichrefertofacts which the reader may already know but which have not yet been discussed in the Series.Suchexamplesareplacedbetweentwoasterisks:∗...∗.Mostreaderswill undoubtedlyfindthattheseexampleswillhelpthemtounderstandthetext.Inother cases,thepassagesbetween∗...∗ refertoresultswhicharediscussedelsewherein theSeries.Wehopethereaderwillbeabletoverifytheabsenceofanyviciouscircle. 5.Thelogicalframeworkofeachchapterconsistsofthedefinitions,theaxioms, and the theorems of the chapter. These are the parts that have mainly to be borne in mind for subsequent use. Less important results and those which can easily be deducedfromthetheoremsarelabelledas“propositions”,“lemmas”,“corollaries”, “remarks”,etc.Thosewhichmaybeomittedatafirstreadingareprintedinsmall type.Acommentaryonaparticularlyimportanttheoremappearsoccasionallyunder thenameof“scholium”. Toavoidtediousrepetitionsitissometimesconvenienttointroducenotationor abbreviations which are in force only within a certain chapter or a certain section ofachapter(forexample,inachapterwhichisconcernedonlywithcommutative rings,theword“ring”wouldalwayssignify“commutativering”).Suchconventions arealwaysexplicitlymentioned,generallyatthebeginningofthechapterinwhich theyoccur. 6. Some passages are designed to forewarn the reader against serious errors. Thesepassagesaresignpostedinthemarginwiththesign (“dangerousbend”). 7.TheExercisesaredesignedbothtoenablethereadertosatisfyhimselfthathe hasdigestedthetextandtobringtohisnoticeresultswhichhavenoplaceinthetext butwhicharenonethelessofinterest.Themostdifficultexercisesbearthesign¶. 8. In general we have adhered to the commonly accepted terminology, except wherethereappearedtobegoodreasonsfordeviatingfromit. 9. We have made a particular effort alwaysto use rigorously correct language, withoutsacrificingsimplicity.Asfaraspossiblewehavedrawnattentioninthetext toabusesoflanguage,withoutwhichanymathematicaltextrunstheriskofpedantry, nottosayunreadability. 10. Since in principle the text consists of a dogmatic exposition of a theory, it contains in general no references to the literature. Bibliographical are gathered together in Historical Notes. The bibliography which follows each historical note containsingeneralonlythosebooksandoriginalmemoirswhichhavebeenofthe greatestimportanceintheevolutionofthetheoryunderdiscussion.Itmakesnosort ofpretencetocompleteness. Astotheexercises,wehavenotthoughtitworthwhileingeneraltoindicatetheir origins, since they have been taken from many different sources (original papers, textbooks,collectionsofexercises). TO THE READER VII 11.InthepresentBook,referencestotheorems,axioms,definitions,... aregiven byquotingsuccessively: –theBook(usingtheabbreviationlistedinSection3),chapterandpage,where theycanbefound; –thechapterandpageonlywhenreferringtothepresentBook. TheSummariesofResultsarequotedbytotheletterR;thusSetTheory,Rsignifies “SummaryofResultsoftheTheoryofSets”. CONTENTS TOTHEREADER ............................................ V CONTENTS ................................................. IX CHAPTERI DERIVATIVES §1. FIRSTDERIVATIVE ...................................... 3 1. Derivativeofavectorfunction ............................. 3 2. Linearityofdifferentiation ................................ 5 3. Derivativeofaproduct ................................... 6 4. Derivativeoftheinverseofafunction ....................... 8 5. Derivativeofacompositefunction ......................... 9 6. Derivativeofaninversefunction ........................... 9 7. Derivativesofreal-valuedfunctions ........................ 10 §2. THEMEANVALUETHEOREM ............................ 12 1. Rolle’sTheorem ........................................ 12 2. Themeanvaluetheoremforreal-valuedfunctions ............. 13 3. Themeanvaluetheoremforvectorfunctions ................. 15 4. Continuityofderivatives ................................. 18 §3. DERIVATIVESOFHIGHERORDER ........................ 20 1. Derivativesofordern ................................... 20 2. Taylor’sformula ........................................ 21 §4. CONVEXFUNCTIONSOFAREALVARIABLE .............. 23 1. Definitionofaconvexfunction ............................ 24 2. Familiesofconvexfunctions .............................. 27 3. Continuityanddifferentiabilityofconvexfunctions ............ 27 4. Criteriaforconvexity .................................... 30 Exerciseson§1 ................................................ 35 Exerciseson§2 ................................................ 37 X CONTENTS Exerciseson§3 ................................................ 39 Exerciseson§4 ................................................ 45 CHAPTERII PRIMITIVESANDINTEGRALS §1. PRIMITIVESANDINTEGRALS ............................ 51 1. Definitionofprimitives .................................. 51 2. Existenceofprimitives ................................... 52 3. Regulatedfunctions ..................................... 53 4. Integrals .............................................. 56 5. Propertiesofintegrals ................................... 59 6. IntegralformulafortheremainderinTaylor’sformula; primitivesofhigherorder ................................ 62 §2. INTEGRALSOVERNON-COMPACTINTERVALS ........... 62 1. Definitionofanintegraloveranon-compactinterval ........... 62 2. Integralsofpositivefunctionsoveranon-compactinterval ...... 66 3. Absolutelyconvergentintegrals ............................ 67 §3. DERIVATIVESANDINTEGRALS OFFUNCTIONSDEPENDINGONAPARAMETER ........... 68 1. Integralofalimitoffunctionsonacompactinterval ........... 68 2. Integralofalimitoffunctionsonanon-compactinterval ....... 69 3. Normallyconvergentintegrals ............................. 72 4. Derivativewithrespecttoaparameterofanintegral overacompactinterval .................................. 73 5. Derivativewithrespecttoaparameterofanintegral overanon-compactinterval ............................... 75 6. Changeoforderofintegration ............................. 76 Exerciseson§1 ................................................ 79 Exerciseson§2 ................................................ 84 Exerciseson§3 ................................................ 86 CHAPTERIII ELEMENTARYFUNCTIONS §1. DERIVATIVESOFTHEEXPONENTIAL ANDCIRCULARFUNCTIONS ............................. 91 1. Derivativesoftheexponentialfunctions;thenumbere .......... 91 2. Derivativeoflog x ..................................... 93 a 3. Derivativesofthecircularfunctions;thenumberπ ............ 94 4. Inversecircularfunctions ................................. 95