ebook img

Elements of distribution theory PDF

529 Pages·2005·2.207 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elements of distribution theory

P1:JZP/JZK P2:JZP CUNY148/Severini-FM CUNY148/Severini June8,2005 17:55 This page intentionally left blank P1:JZP/JZK P2:JZP CUNY148/Severini-FM CUNY148/Severini June8,2005 17:55 Elements of Distribution Theory Thisdetailedintroductiontodistributiontheoryusesnomeasuretheory, makingitsuitableforstudentsinstatisticsandeconometricsaswellasfor researchers who use statistical methods. Good backgrounds in calculus andlinearalgebraareimportantandacourseinelementarymathematical analysisisuseful,butnotrequired.Anappendixgivesadetailedsummary ofthemathematicaldefinitionsandresultsthatareusedinthebook. Topicscoveredrangefromthebasicdistributionanddensityfunctions, expectation, conditioning, characteristic functions, cumulants, conver- gence in distribution, and the central limit theorem to more advanced conceptssuchasexchangeability,modelswithagroupstructure,asymp- totic approximations to integrals, orthogonal polynomials, and saddle- point approximations. The emphasis is on topics useful in understand- ing statistical methodology; thus, parametric statistical models and the distribution theory associated with the normal distribution are covered comprehensively. ThomasA.SeverinireceivedhisPh.D.inStatisticsfromtheUniversityof Chicago.HeisnowaProfessorofStatisticsatNorthwesternUniversity. He has also written Likelihood Methods in Statistics. He has published extensively in statistical journals such as Biometrika, Journal of the American Statistical Association, and Journal of the Royal Statistical Society. He is a member of the Institute of Mathematical Statistics and theAmericanStatisticalAssociation. i P1:JZP/JZK P2:JZP CUNY148/Severini-FM CUNY148/Severini June8,2005 17:55 CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC MATHEMATICS EditorialBoard: R.Gill,DepartmentofMathematics,UtrechtUniversity B.D.Ripley,DepartmentofStatistics,UniversityofOxford S.Ross,EpsteinDepartmentofIndustrial&SystemsEngineering,Universityof SouthernCalifornia B.W.Silverman,St.Peter’sCollege,Oxford M.Stein,DepartmentofStatistics,UniversityofChicago This series of high-quality upper-division textbooks and expository monographs covers all aspects of stochastic applicable mathematics. The topics range from pure and applied statistics to probability theory, operations research, optimization, and mathematical pro- gramming. The books contain clear presentations of new developments in the field and alsoofthestateoftheartinclassicalmethods.Whileemphasizingrigoroustreatmentof theoreticalmethods,andbooksalsocontainapplicationsanddiscussionsofnewtechniques madepossiblebyadvancesincomputationalpractice. ii P1:JZP/JZK P2:JZP CUNY148/Severini-FM CUNY148/Severini June8,2005 17:55 Elements of Distribution Theory THOMAS A. SEVERINI iii CAMBRIDGEUNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB28RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521844727 © Cambridge University Press 2005 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2005 ISBN-13 978-0-511-34519-7 eBook (NetLibrary) ISBN-10 0-511-34519-4 eBook (NetLibrary) ISBN-13 978-0-521-84472-7 hardback ISBN-10 0-521-84472-X hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. P1:JZP/JZK P2:JZP CUNY148/Severini-FM CUNY148/Severini June8,2005 17:55 ToMyParents v P1:JZP/JZK P2:JZP CUNY148/Severini-FM CUNY148/Severini June8,2005 17:55 vi P1:JZP/JZK P2:JZP CUNY148/Severini-FM CUNY148/Severini June8,2005 17:55 Contents Preface pagexi 1. PropertiesofProbabilityDistributions 1 1.1 Introduction 1 1.2 BasicFramework 1 1.3 RandomVariables 5 1.4 DistributionFunctions 8 1.5 QuantileFunctions 15 1.6 DensityandFrequencyFunctions 20 1.7 IntegrationwithRespecttoaDistributionFunction 26 1.8 Expectation 28 1.9 Exercises 34 1.10 SuggestionsforFurtherReading 38 2. ConditionalDistributionsandExpectation 39 2.1 Introduction 39 2.2 MarginalDistributionsandIndependence 39 2.3 ConditionalDistributions 46 2.4 ConditionalExpectation 53 2.5 Exchangeability 59 2.6 Martingales 62 2.7 Exercises 64 2.8 SuggestionsforFurtherReading 67 3. CharacteristicFunctions 69 3.1 Introduction 69 3.2 BasicProperties 72 3.3 FurtherPropertiesofCharacteristicFunctions 82 3.4 Exercises 90 3.5 SuggestionsforFurtherReading 93 4. MomentsandCumulants 94 4.1 Introduction 94 4.2 MomentsandCentralMoments 94 4.3 LaplaceTransformsandMoment-GeneratingFunctions 99 4.4 Cumulants 110 vii P1:JZP/JZK P2:JZP CUNY148/Severini-FM CUNY148/Severini June8,2005 17:55 viii Contents 4.5 MomentsandCumulantsoftheSampleMean 120 4.6 ConditionalMomentsandCumulants 124 4.7 Exercises 127 4.8 SuggestionsforFurtherReading 130 5. ParametricFamiliesofDistributions 132 5.1 Introduction 132 5.2 ParametersandIdentifiability 132 5.3 ExponentialFamilyModels 137 5.4 HierarchicalModels 147 5.5 RegressionModels 150 5.6 ModelswithaGroupStructure 152 5.7 Exercises 164 5.8 SuggestionsforFurtherReading 169 6. StochasticProcesses 170 6.1 Introduction 170 6.2 Discrete-TimeStationaryProcesses 171 6.3 MovingAverageProcesses 174 6.4 MarkovProcesses 182 6.5 CountingProcesses 187 6.6 WienerProcesses 192 6.7 Exercises 195 6.8 SuggestionsforFurtherReading 198 7. DistributionTheoryforFunctionsofRandomVariables 199 7.1 Introduction 199 7.2 FunctionsofaReal-ValuedRandomVariable 199 7.3 FunctionsofaRandomVector 202 7.4 SumsofRandomVariables 212 7.5 OrderStatistics 216 7.6 Ranks 224 7.7 MonteCarloMethods 228 7.8 Exercises 231 7.9 SuggestionsforFurtherReading 234 8. NormalDistributionTheory 235 8.1 Introduction 235 8.2 MultivariateNormalDistribution 235 8.3 ConditionalDistributions 240 8.4 QuadraticForms 244 8.5 SamplingDistributions 250 8.6 Exercises 253 8.7 SuggestionsforFurtherReading 256 9. ApproximationofIntegrals 257 9.1 Introduction 257 9.2 SomeUsefulFunctions 257 9.3 AsymptoticExpansions 264

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.