ebook img

Elementary Matrices And Some Applications To Dynamics And Differential Equations PDF

432 Pages·1952·15.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elementary Matrices And Some Applications To Dynamics And Differential Equations

eet ELEMENTARY MATRICES ReATRAZER ‘Wi. f-UNCAN AR COMLAK Gxipaee PRESTON POLYTECHNIC LIBRARY f LEARIING RESOURCES SERVICE rr b rtumed oo fore the dete le: stormed 7 oe, |994 512.43. FRA a f oui 30107 533 924 ELEMENTARY MATRICES AND SOME APPLICATIONS TO DYNAMICS AND DIFFERENTIAL EQUATIONS R.A. FRAZER, B.A., DSC., FR.AES., FLAZS., ERS. "Pc ic On he Aram ion “thas pea Lao W. 1, DUNCAN, D.Sc, MIMECKE., FRARS. Dofnar of stam Coke ros, Celt ALR. COLLAR, M.A., DSc, FR.ABS. Sir Gorge Whee Prafenrof erent Engen Tse Unberaty of ri CAMBRIDGE: AT THE UNIVERSITY PRESS 1952 Zooey CONTENTS Brice CHAPTER I BUNDAMENTAL DEFINITIONS AND ;: ELEMENTARY PROPERTIES 14. Preliminary Romecks 12. Notetion anc Prinsgal Type of Matrix 13 Summation of Marios and Salar Moltpies 14 Multipiction of Mateioxs 145 Cnntnued Produsta of Motions 116 Propertie of Diagonal end Ualt Matrons U7. titioning of Matrise into Submatsioes 48 Determinants of Square Masioss 19 Singular Matrices, Degonsresy,ané Rani 140 Adjeint Matrices LAI Reciprocal Matsieee nd Division 1142 Square Matrions with Noll Product 1143 Reversal of Ontr in Prone when Mateose are Teanspoeod or Reoiprocstad 114 Linear Substications 4145 Biliauas aust Quaseatio Poems 1146 Discriminants snd One Signed Quedrutie Forms {LAT Speco) Type of Square Matrix oHAPTER POWERS OF MATRICES, SERIES, AND INEISITESIMAL CALCULUS 24 Intiodatory 22 Power of Matriows 263. Rolymomine of asi 2-4 Infinit Serie of Matricos 25 The Expenential Funotion 2.6 Difisentintion of Matrace BeREe Gess2s an. 27° Differentiation ofthe Exponential Function 28 Mateiws of Diferential Operators 29 Chango ofthe Independant Variablon 2.10 Integration of Matvious 2.1 Tho Mateaant onaPrER ut LAMBDA.MATRICES AND CANONICAL FORMS 34 Prolininary Romaske Paw L Lambla-Matices 32 Lambda Mattoes 33 Multiplication and Division of Lambda Matrices 34 Remainder Theorems for Lamide-Matrios 35 ‘Tho Dotorminantal Byustion and the Adjoit of « Lambda ‘Matrix 36 ‘The Charactcisto Matrix of « Square Mats and the Tatent Roots 3.7 The Capley-Hansilton Theorem, 3.8 Tho Adjoiot and Derived Adjint ofthe Chasnctersto Mate: 3.9. Sylvester's Theowom ‘3:40 Content Form of Bptvostr’s Tore Par 11. Canonical Forme 3.11 Klomentary Operations on Matrioos 3:12 Rouivalent Matrons 13.13 A Canoniel Fora Jor Square Matios of Rank r 3.44 Kauivalont Lambda-Mateioos ‘3-18 Saith’s Canonical Forn for Lambda Matrices 3:16 Colincstory Transformation of Numerical Matrix to a ‘Ganonia! Form, conrunrs cuarren iv jg, MISCELLANEOUS NCMBRICAL MaTHODS 4:1” Range of tho Subjesta Trostod ane L, Determinants, Roiprocal aud Aijoins Matrices, ‘and Systoma of Linccr Algebraic Batons 42, Protiminary Remasis 42. Triangular and Related Mateoes 44, Redaction of Tangalne ond Related Mateooe to Diagonal ‘Form 45° Reciproras of Tiangular and Melted Matioos 45 Computation of Determinants 47 Computation of Resiprosal steios 48. Recipocation by the Methed of Postmaltipliors 49° Reciprooation by the Methed of Submatrion 4410 Reciprosaton by Diet Operations om Rerws 4411 Improvement ofthe Accarsoy of an Appeoximata Resirosal ‘Mois 412 Computation ofthe Ajint ofa Singular Matric 1413 Numerical Sclution of Simultansoue Linear Algebraic Equa. ‘ene Pane UL, High Powero of ¢ Matrix andthe Latent Rots 4.14 Proiminacy Sommary of Svusters Theerom 45 Eralaston ofthe Dominant Latent Roots from the Limiting "Perm of @ High Power of » Matric 416 Rraluation of the Matsix Coeficiente 2 for tho Dominant Hoots 4.17 Simple Iterotive Methods {418 Compitation of the Non-Dominant Latent Roots 4.19 Upper Bounds t the Powers of Matrix Part UL, Algetrnie Rguations of General Deyres 1420 Soinion of Algetnso Ruane and Adaptation of Alison's ermal 421 Conc! Ksiarka on Tenatve Mathods 422 Situation of the Root ofan Algebraic Bquation a 2 ast OMAPTER V LINZAR ORDINARY DIFFERENTIAL EQUATIONS Pane I, Geterat Propertoe ar. 454 Syetems of Simultencous Differential Equations 152. Equivalent Systeme 45. ‘Transformation ofthe Dependons Variable 54 ‘Triangular Syetems and Purdeduitel Torun 55 Conversion ofa System of General Onder into 8 Bist-Ondor ‘System 5.6 Tho Adjoint end Derive Adjoine Matrices 5:7 Construction of the Constituent Solations 5.8. Numerisal Rvaluation of the Constituent Sot 5.9 Expansions in Partial Fractine ‘Pane IL. Construction of the Complementory Fenetion ‘and of Pariodar Intgrad 5:10 Tho Compicmontary Function 5.11 Construction of » Paonia: Intgral LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS (cominuct PaweT. Bowndary Prollene 61. Protininary Remarie 62. Charcteritie Numbers 63 Notation for Ono-Point Boundary Problems 64 Dirovt Solution of the Genceal Oue-Pont Boundary Preblem 65 Special Solution fr Starsand O-Point Houmas Pecleune 66 Content Fon of the Syeda Slaton 67 Notation ond Dinect Solation for ‘Two-Puiat Doundery Problems 15 18 188 s, ‘Pana IL. Stems of Firat Onder 68. Proliminary Remaehs (69) Spesial Solution of the General Fist- Onder System, ond ite “Connection with Hearse’ tho 610 Determinantel Kguation, Adjoizt Msteces, and Mod Colum forthe Simple First-Order Syatem 6-1 Generel, Die, and Special Solokions of the Simple First. ‘Order Bystom {612 Power vies Saluson of ple Fest Onler Sytem 418 Power Beciee Salton of to Simple First-Order Sytem for 8 "Two-Point Boundary Proton NUMPRICAL SOLUTIONS OF LINEAR ORDINARY (DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFIOVENTS 7A Range ofthe Chapter 172. Bristenos Theor and Bingularsios 73 Fundamental Solutions of Single Linear Homogeneous Begetion 7-4 Syms of Santarsoue Lizese Difrontial Equations 75 Tae Peano-Baksr Method of Inayration 7-6 Various Propctes ofthe Matrzant 77 A Continuation Formals 178 Solution of the onnogencons Vind Oxdae Systm of Bquasions ‘in Power Sarcs 179 Colleton ad Galerkin’ Method 17410 Bxamplos of Numerical olusion hy Cllocation sud Golesi Method 1744 he Method of Mens Cooiants 17.42 Golution by Most Coolie: Hamp No.1 ‘743 Maple No.2 7.44 Bxample No. 3 745 Example No. 4 x contents OMAPTER VIIT KINEMATICS AND DYNAMICS OF SYSTEMS Pant I, Frames of Reference and Kinematics ant a 84 Frame of Refornce 286 182 Chango of Reference Axes in Two Dimensions 2st 8.3 Angular Coonlinntes of « Thrve-Dinensinal Moving Frame of Reference 250 ‘The Orthogonal Matix of Traneermation 251 “Matrioes Reproxnting Vinte Rotation of « Frame of Rafer. nae 25 8.46 Matrix of Transformation and Tastantancous Angular Valo sites Bxpresed in Angus Conrdinstce 258 8.7 Components of Velocity and Aselertion 258 88 Kinematic Consteaint of a Rigid Body 250 8.9 Syston of Rig Bodin and Genrrlied Cocrdnntae 200 Pauw TI. Statice and Dynamics of Systane {8.10 Virtual Work and the Conditions of Equilibrium 262 £8.11 Conservative and Non-Conservative Fields of Fores 263 8.12 Dynamical Systems 206 8.13 Bquesions of Motion of an Aeroplane 267 8.14 Lagrange's Bountions of Motion of a Holonomoxs Syatom 200 £8.48 Ignoration of Coordinates mm 8.16 The Gonerliod Componente of Momentom and Hamion' Byuations mm 8.17 Lagrange’ Bqutions with s Moving Frame of Refrense 277 SYSTEMS WITH LINBAR DYNAMICAL EQUATIONS 9.4 Tntroduetory Remarks 280 92 Diturbed Motions 280 9:9 Comervative Systom Disturlol fous Bquilrians 231 9-4 Disturbed Stendy Motion of m Consrvativo System with ‘gnorable Coordinates 22

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.