ebook img

Elementary Abstract Algebra: Examples and Applications PDF

785 Pages·2017·12.02 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elementary Abstract Algebra: Examples and Applications

Abstract Algebra: Examples and Applications J. Hill, C. Thron et al. Elementary Abstract Algebra: Examples and Applications Supervising editors: Justin Hill, Chris Thron St. Philip’s College / Texas A&M University-Central Texas Incorporating source materials by Thomas Judson (Stephen F. Austin State University) Dave Witte Morris and Joy Morris (University of Lethbridge) A. J. Hildebrand (University of Illinois Urbana-Champaign) With chapters by Christy Douglass, Jennifer Lazarus, Mark Leech, Moses Marmolejo, Adam McDonald, Katrina Smith, Johnny Watts, David Weathers, Holly Webb (TAMU-CT) and additional contributions by Semi Harrison,Rachel McCoy, Khoi Tran (TAMU-CT) November 5, 2021 This book is offered under the GNU Free Documentation License, Version 1.2, or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the appendix, entitled “GNU Free Dcoumentation License”. The Set Theory and Functions chapters are licensed under Creative Commons license (Attribution-NonCommercial-ShareAlike 2.0). 2 Material from the 2012 version of ”Abstract Algebra, Theory and Appli- cations” by Thomas Judson may be found throughout much of the book. Attributions are found at the beginning of each chapter. Judson’s book is covered by the GFDL license, and all chapters of the current book contain- ing his work are covered by the same license. A current version of ”Abstract Algebra, Theory and Applications” may be found at: abstract.ups.edu. The Set Theory and Functions chapters are largely based on material from ”Proofs and Concepts”(version 0.78, May 2009) by Dave Witte Morris and Joy Morris, which may be found online at: https://archive.org/details/flooved3499, or http://people.uleth.ca/~dave.morris/books/proofs+concepts.html TheirbookiscoveredbytheCreativeCommonslicense(Attribution-NonCommercial- ShareAlike 2.0), and the two chapters containing their work are covered by the same license. The material on induction was modified from LATEXcode originally ob- tained from A. J. Hildebrand, whose course web page is at: http://www.math.uiuc.edu/~hildebr/ Justin and Chris would like to express their deepest gratitude to Tom, Dave and Joy, and A. J. for generously sharing their original material. They were not involved in the preparation of this manuscript, and are not responsible for any errors or other shortcomings. Pleasesendcommentsandcorrectionsto: [email protected]. Youmayalso request the solutions manual and LATEX source code from this same email address. Course web page: http://abstractalgebra.altervista.org/ Online book: http://sl2x.aimath.org/book/aafmt/ ©2013,2014, 2015, 2018, 2020 by Justin Hill and Chris Thron. Some rights reserved. Portions ©1997 by Thomas Judson. Some rights reserved. 3 Portions ©2006-2009 by Dave Witte Morris and Joy Morris. Some rights reserved. Permission is granted to copy, distribute and/or modify this document underthetermsoftheGNUFreeDocumentationLicense,Version1.2orany later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. The license may be found at: https://www.gnu.org/licenses/fdl-1.3.en.html ISBN: 978-0-359-04211-1 Contents 1 Forward 1 2 Glossary of symbols 8 3 Preliminaries 10 3.1 In the Beginning . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Integers, rational numbers, real numbers . . . . . . . . . . . . 11 3.2.1 Properties of arithmetic operations . . . . . . . . . . . 12 3.2.2 Order relations . . . . . . . . . . . . . . . . . . . . . . 15 3.2.3 Manipulating equations and inequalities . . . . . . . . 16 3.2.4 Exponentiation (VERY important) . . . . . . . . . . . 20 3.3 Test yourself . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 Complex Numbers 25 4.1 The origin of complex numbers . . . . . . . . . . . . . . 25 4.1.1 A number that can’t be real (and we can prove it!) . . 25 4.1.2 Unreal, but unavoidable . . . . . . . . . . . . . . . . . 29 4.1.3 A mathematical revolution . . . . . . . . . . . . . . . 30 4.2 Arithmetic with complex numbers . . . . . . . . . . . . . 35 4.2.1 Complex arithmetic . . . . . . . . . . . . . . . . . . . 35 4 CONTENTS 5 4.2.2 Comparison of integer, rational, real and complex ad- dition properties . . . . . . . . . . . . . . . . . . . . . 40 4.2.3 Comparisonofinteger,rational,realandcomplexmul- tiplication properties . . . . . . . . . . . . . . . . . . . 41 4.2.4 Modulus and complex conjugate . . . . . . . . . . . . 42 4.3 Alternative representations of complex numbers . . . . . 46 4.3.1 Cartesian representation of complex numbers . . . . . 46 4.3.2 Vector representation of complex numbers . . . . . . . 46 4.3.3 Polar representation of complex numbers . . . . . . . 48 4.3.4 Converting between rectangular and polar form . . . . 48 4.3.5 Multiplication and powers in complex polar form . . . 52 4.3.6 A Remark on representations of complex numbers . . 59 4.4 Complex numbers and roots of algebraic equations . . . . . . 60 4.4.1 Roots of unity and regular polygons . . . . . . . . 60 4.4.2 Complex nth roots in general . . . . . . . . . . . 67 4.4.3 Complex roots of polynomial equations . . . . . . 70 4.5 Applications of complex numbers . . . . . . . . . . . . . 74 4.5.1 General remarks on the usefulness of complex numbers 74 4.5.2 Complex numbers in electrical engineering: phasors . 74 4.5.3 Complex numbers and fractals: the Mandelbrot set . . 80 4.6 Hints for “Complex Numbers” exercises . . . . . . . . . . . . 84 4.7 Study guide for “Complex Numbers” chapter . . . . . . . . . 86 5 Modular Arithmetic 90 5.1 Introductory examples . . . . . . . . . . . . . . . . . . . 90 5.2 Modular equivalence and modular arithmetic . . . . . . . . . 92 5.3 Modular equations . . . . . . . . . . . . . . . . . . . . . 101 5.3.1 More uses of modular arithmetic . . . . . . . . . . . . 101 5.3.2 Solving modular equations. . . . . . . . . . . . . . . . 104 5.4 The integers mod n (a.k.a. Z ) . . . . . . . . . . . . . . 111 n 5.4.1 Remainder arithmetic . . . . . . . . . . . . . . . . . . 111 6 CONTENTS 5.4.2 Cayley tables for Z . . . . . . . . . . . . . . . . . . . 117 n 5.4.3 Closure properties of Z . . . . . . . . . . . . . . . . . 119 n 5.4.4 Identities and inverses in Z . . . . . . . . . . . . . . . 121 n 5.4.5 Inverses in Z . . . . . . . . . . . . . . . . . . . . . . . 121 n 5.4.6 Other arithmetic properties of ⊕ and (cid:12) . . . . . . . . 123 5.4.7 Group: a central concept in abstract algebra . . . . . 124 5.5 Modular division . . . . . . . . . . . . . . . . . . . . . . 126 5.5.1 A sticky problem . . . . . . . . . . . . . . . . . . . . . 126 5.5.2 Greatest common divisors . . . . . . . . . . . . . . . . 131 5.5.3 Computer stuff . . . . . . . . . . . . . . . . . . . . . . 135 5.5.4 Diophantine equations . . . . . . . . . . . . . . . . . . 136 5.5.5 Multiplicative inverse for modular arithmetic . . . . . 144 5.5.6 Chinese remainder theorem . . . . . . . . . . . . . . . 147 5.6 Hints for “Modular Arithmetic” exercises . . . . . . . . . . . 150 5.7 Study guide for “Modular Arithmetic” chapter . . . . . . . . 152 6 Modular Arithmetic, Decimals, and Divisibility 156 6.1 Decimal representations . . . . . . . . . . . . . . . . . . . . . 156 6.1.1 Decimal representation formula . . . . . . . . . . . . . 156 6.1.2 Formulas for decimal digits of of integers . . . . . . . 157 6.1.3 Formulas for decimal digits of nonintegers . . . . . . . 159 6.1.4 Repeating decimals . . . . . . . . . . . . . . . . . . . . 162 6.1.5 Divisibility rules . . . . . . . . . . . . . . . . . . . . . 164 6.2 Decimal representations in other bases . . . . . . . . . . . . . 168 7 Set Theory 174 7.1 Set Basics . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.1.1 Definition and examples . . . . . . . . . . . . . . . . . 175 7.1.2 Important sets of numbers . . . . . . . . . . . . . . . . 178 7.1.3 Operations on sets . . . . . . . . . . . . . . . . . . . . 180 7.2 Properties of set operations . . . . . . . . . . . . . . . . 186 CONTENTS 7 7.3 Do the subsets of a set form a group? . . . . . . . . . . 192 7.4 Hints for “Set Theory” exercises . . . . . . . . . . . . . . . . 195 7.5 Study guide for “Set Theory” chapter . . . . . . . . . . . . . 196 8 Functions: Basic Concepts 198 8.1 The Cartesian product: a different type of set operation 198 8.2 Introduction to functions . . . . . . . . . . . . . . . . . 201 8.2.1 Informal look at functions . . . . . . . . . . . . . . . . 201 8.2.2 Official definition of functions . . . . . . . . . . . . . . 208 8.3 One-to-one functions . . . . . . . . . . . . . . . . . . . . 212 8.3.1 Concept and definition . . . . . . . . . . . . . . . . . . 212 8.3.2 Proving that a function is one-to-one . . . . . . . . . . 215 8.4 Onto functions . . . . . . . . . . . . . . . . . . . . . . . 224 8.4.1 Concept and definition . . . . . . . . . . . . . . . . . . 224 8.4.2 Proving that a function is onto . . . . . . . . . . . . . 226 8.5 Bijections . . . . . . . . . . . . . . . . . . . . . . . . . . 232 8.5.1 Concept and definition . . . . . . . . . . . . . . . . . . 232 8.5.2 Proving that a function is a bijection . . . . . . . . . . 233 8.6 Composition of functions . . . . . . . . . . . . . . . . . . 239 8.6.1 Concept and definition . . . . . . . . . . . . . . . . . . 239 8.6.2 Proofs involving function composition . . . . . . . . . 244 8.7 Inverse functions . . . . . . . . . . . . . . . . . . . . . . 249 8.7.1 Concept and definition . . . . . . . . . . . . . . . . . . 249 8.7.2 Which functions have inverses? . . . . . . . . . . . . . 252 8.8 Do functions from A to B form a group? . . . . . . . . . . . . 255 8.9 Hints for “Functions: basic concepts” exercises . . . . . . . . 258 8.10 Study guide for “Functions: Basic Concepts” chapter . . . . . 259 8 CONTENTS 9 Introduction to Cryptography 264 9.1 Overview and basic terminology. . . . . . . . . . . . . . . . . 264 9.2 Private key cryptography . . . . . . . . . . . . . . . . . . . . 266 9.2.1 Shift codes . . . . . . . . . . . . . . . . . . . . . . . . 266 9.2.2 Affine codes . . . . . . . . . . . . . . . . . . . . . . . . 269 9.2.3 Monoalphabetic codes . . . . . . . . . . . . . . . . . . 272 9.2.4 Polyalphabetic codes . . . . . . . . . . . . . . . . . . . 273 9.2.5 Spreadsheet exercises. . . . . . . . . . . . . . . . . . . 276 9.3 Public key cryptography . . . . . . . . . . . . . . . . . . . . . 280 9.3.1 The RSA cryptosystem . . . . . . . . . . . . . . . 281 9.3.2 Message verification . . . . . . . . . . . . . . . . . . . 284 9.3.3 RSA exercises . . . . . . . . . . . . . . . . . . . . 285 9.3.4 Additional exercises: identifying prime numbers . 288 9.4 References and suggested readings . . . . . . . . . . . . . . . 295 9.5 Hints for “Applications (I): Introduction to Cryptography” exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 9.6 Study guide for “Applications (I): Introduction to Cryptog- raphy” chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 297 10 Sigma Notation 299 10.1 Lots of examples . . . . . . . . . . . . . . . . . . . . . . 299 10.2 Algebraic rules for Sigmas . . . . . . . . . . . . . . . . . . . . 302 10.2.1 Constant multiples, sums, and products of sums . . . 302 10.3 Change of variable and rearrangement of sums . . . . . . 304 10.4 Common Sums . . . . . . . . . . . . . . . . . . . . . . . 312 10.5 Summation by parts . . . . . . . . . . . . . . . . . . . . . . . 316 11 Application: Sigma Notation in Linear Algebra 322 11.1 Introduction to sigma notation in linear algebra . . . . . 322 11.2 Matrix multiplication. . . . . . . . . . . . . . . . . . . . . . . 323 11.3 The identity matrix and the Kronecker delta . . . . . . . . . 326 CONTENTS 9 11.4 Abbreviated matrix notations . . . . . . . . . . . . . . . . . . 331 11.5 Matrix transpose and matrix inverse . . . . . . . . . . . . . . 333 11.5.1 Matrix transpose . . . . . . . . . . . . . . . . . . . . . 333 11.5.2 Matrix inverse . . . . . . . . . . . . . . . . . . . . . . 335 11.6 Rotation matrices (in 3 dimensions) . . . . . . . . . . . . . . 335 11.7 Matrix traces . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 11.8 Levi-Civita symbols and applications . . . . . . . . . . . . . . 341 11.8.1 Levi-Civita symbols: definitions and examples. . . . . 341 11.8.2 Levi-Civita symbols and determinants . . . . . . . . . 344 11.8.3 Levi-Civita symbols and cross products . . . . . . . . 349 11.8.4 Proof of the vector BAC-CAB Rule . . . . . . . . . . 352 11.8.5 Proof of Euler’s Rotation Theorem . . . . . . . . . . . 356 11.9 Hints for “Sigma Notation” and “Applications of Sigma No- tation” exercises . . . . . . . . . . . . . . . . . . . . . . . . . 362 11.10Study guide for “Sigma Notation” chapter . . . . . . . . . . . 364 12 Polynomials 368 12.1 Why study polynomials? . . . . . . . . . . . . . . . . . . . . . 368 12.2 Review of polynomial arithmetic . . . . . . . . . . . . . . 371 12.3 Polynomial operations in summation notation . . . . . . . . . 373 12.4 More exotic polynomials . . . . . . . . . . . . . . . . . . . . . 380 12.5 Polynomial properties and summation notation . . . . . . . . 386 12.6 Polynomials and division . . . . . . . . . . . . . . . . . . . . . 394 12.6.1 The Division Algorithm for polynomials over fields 394 12.6.2 Greatest common divisors of polynomials . . . . . . . 398 12.6.3 Polynomial roots and the FTOA (easy part) . . 401 12.6.4 Algebraic closure and the FTOA (hard part) . . . . . 408 12.7 Hints for “Polynomial Rings” exercises . . . . . . . . . . . . . 413

Description:
Material from ”Abstract Algebra, Theory and Applications” by Thomas .. 10.3.2 Orders of elements, Euler's theorem, Fermat's little theorem, and .. many abstract algebra classes, the syllabus is covered and the students retain.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.