ebook img

Electroweak Processes in External Active Media PDF

279 Pages·2013·3.757 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electroweak Processes in External Active Media

Springer Tracts in Modern Physics 252 Alexander Kuznetsov Nickolay Mikheev Electroweak Processes in External Active Media Springer Tracts in Modern Physics Volume 252 Honorary Editor G. Höhler, Karlsruhe, Germany Series Editors A. Fujimori, Tokyo, Japan J. H. Kühn, Karlsruhe, Germany T. Müller, Karlsruhe, Germany F. Steiner, Ulm, Germany W. C. Stwalley, Storrs, CT, USA J. E. Trümper, Garching, Germany P. Wölfle, Karlsruhe, Germany U. Woggon, Berlin, Germany For furthervolumes: http://www.springer.com/series/426 Springer Tracts in Modern Physics SpringerTractsinModernPhysicsprovidescomprehensiveandcriticalreviewsoftopicsof currentinterestinphysics.Thefollowingfieldsareemphasized:ElementaryParticlePhysics, CondensedMatterPhysics,LightMatterInteraction,AtomicandMolecularPhysics,Complex Systems,FundamentalAstrophysics. Suitablereviewsofotherfieldscanalsobeaccepted.TheEditorsencourageprospective authors to correspond with them in advance of submitting a manuscript. For reviews of topicsbelongingtotheabovementionedfields,theyshouldaddresstheresponsibleEditor aslisted below. Special offer: For all clients with a print standing order we offer free access to the electronic volumes ofthe Seriespublished inthecurrent year. ElementaryParticlePhysics,Editors CondensedMatterPhysics,Editors JohannH.Kühn AtsushiFujimori EditorforThePacificRim InstitutfürTheoretischeTeilchenphysik KarlsruheInstitutfürTechnologieKIT DepartmentofPhysics Postfach6980 UniversityofTokyo 76049Karlsruhe,Germany 7-3-1Hongo,Bunkyo-ku Phone:+49(721)6083372 Tokyo113-0033,Japan Fax:+49(721)370726 Email:[email protected] Email:[email protected] http://wyvern.phys.s.u-tokyo.ac.jp/ www-ttp.physik.uni-karlsruhe.de/*jk welcome_en.html ThomasMüller PeterWölfle InstitutfürExperimentelleKernphysik InstitutfürTheoriederKondensiertenMaterie KarlsruheInstitutfürTechnologieKIT KarlsruheInstitutfürTechnologieKIT Postfach6980 Postfach6980 76049Karlsruhe,Germany 76049Karlsruhe,Germany Phone:+49(721)6083524 Phone:+49(721)6083590 Fax:+49(721)6072621 Phone:+49(721)6087779 Email:[email protected] Email:peter.woelfl[email protected] www-ekp.physik.uni-karlsruhe.de www-tkm.physik.uni-karlsruhe.de FundamentalAstrophysics,Editor ComplexSystems,Editor JoachimE.Trümper FrankSteiner Max-Planck-InstitutfürExtraterrestrische InstitutfürTheoretischePhysik Physik UniversitätUlm Postfach1312 Albert-Einstein-Allee11 85741Garching,Germany 89069Ulm,Germany Phone:+49(89)30003559 Phone:+49(731)5022910 Fax:+49(89)30003315 Fax:+49(731)5022924 Email:[email protected] Email:[email protected] www.mpe-garching.mpg.de/index.html www.physik.uni-ulm.de/theo/qc/group.html SolidStateandOpticalPhysics Atomic,MolecularandOpticalPhysics UlrikeWoggon WilliamC.Stwalley InstitutfürOptikundAtomarePhysik UniversityofConnecticut TechnischeUniversitätBerlin DepartmentofPhysics Straßedes17.Juni135 2152HillsideRoad,U-3046 10623Berlin,Germany Storrs,CT06269-3046,USA Phone:+49(30)31478921 Phone:+1(860)4864924 Fax:+49(30)31421079 Fax:+1(860)4863346 Email:[email protected] Email:[email protected] www.ioap.tu-berlin.de www-phys.uconn.edu/faculty/stwalley.html Alexander Kuznetsov Nickolay Mikheev • Electroweak Processes in External Active Media 123 Alexander Kuznetsov Nickolay Mikheev Theoretical Physics Department Yaroslavl StateP.G. DemidovUniversity Yaroslavl Russia ISSN 0081-3869 ISSN 1615-0430 (electronic) ISBN 978-3-642-36225-5 ISBN 978-3-642-36226-2 (eBook) DOI 10.1007/978-3-642-36226-2 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013934025 (cid:2)Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Inthelatetwentiethandtheearlytwenty-firstcenturies,themostintensiveprogress wasobservedinthesciences,thatdevelopatthejunctionoftwosciences.Themost interesting among them, seem to be those that combine the branches most distant fromeachother.Ifso,thenitiseasytoidentifytheleaderofsuchsciences.Itisone thatconnectsthesmallestobjectsavailableforresearch,elementaryparticles,and these giant objects like stars, and has the name of Particle Astrophysics. It is not difficulttoidentifythemajormilestonesinthelifeofthisrelativelyyoung,butvery rapidlydevelopingscience.Thebirthismostlikelytobedatedtothebeginningof the 1930s. Just then, after the discovery of a neutron by J. Chadwick in 1932, the concept of a neutron star was proposed by L. D. Landau, and independently by W.BaadeandF.Zwicky.Thestartofthematurationofthissciencecanbemoreor lessconfidentlydatedto1987whenextragalacticneutrinoswereregisteredforthe firsttimefromthesupernovaSN1987AexplosionintheLargeMagellanicCloud,a satellite galaxy of our Milky Way. For the date of the endpoint of the maturation period for particle astrophysics, one can propose 2001 when the solar-neutrino puzzle was solved in a unique experiment at the heavy-water detector installed at theSudburyNeutrinoObservatory.ThisexperimentconfirmedB.Pontecorvo’skey idea concerning neutrino oscillations and, along with experiments that studied atmospheric and reactor neutrinos, thereby proved the existence of a nonzero neutrinomassandtheexistenceofmixingintheleptonsector.TheSunappearedin this case asa natural laboratory for investigationsof neutrino properties. Thereexistsomebooksonthetopicwherethebasicsofthisnewsciencecanbe studied. However, new facts and ideas appear so fast that it is necessary for specialists to follow not only journal papers but also electronic preprints, in order to keep abreast of the latest developments. Apageofthisnewscience,whichontheonehandisratherdifficultandonthe other hand is not covered enough by books or reviews, deals with the particle processes under the extreme conditions of the stellar interior—hot dense plasma and strong electromagnetic fields. This discipline, which can be called Quantum Field Theory in an External Active Media, was founded in the 1970s, and now it continues in motion. As an attempt to set some milestone, the objective of our previous monograph [1] was to give a systematic description of the methods of calculation of the quantum processes, both at the tree and loop levels, in external v vi Preface electromagnetic fields. The aim of the present monograph is to consider the quantum processes under an influence of, along with a magnetic field, one more external active media which is hot dense plasma. The review is based in part on the special lecture course given to the second- yearmaster-coursestudentsstudyingattheTheoreticalPhysicsDepartmentofthe Yaroslavl State University, Yaroslavl, Russia. It can be used by graduate and postgraduate students specializing in theoretical physics and being familiar with the basics of the Quantum Field Theory and the Standard Model of the Electro- weak Interactions. The authors make a great effort to give all the details that will makethisbookavaluabletextforstudents.Themonographcanbealsousefulfor specialistsintheQuantumFieldTheoryandparticlephysics,whoareinterestedin the problems of physics of quantum phenomena in external active media. We have obtained a part of the results presented in this monograph in co-authorshipwithourcolleaguesandwithourgraduateandpostgraduatestudents attheDepartmentofTheoreticalPhysicsofYaroslavlStateUniversity.We thank L. A. Vassilevskaya, A. A. Gvozdev, A. Ya. Parkhomenko, M. V. Chistyakov, I. S. Ognev, E. N. Narynskaya, D. A. Rumyantsev, A. A. Okrugin, R. A. Anikin, A. M. Shitova, and M. S. Radchenko for collaboration and helpful discussions. We are grateful to S.I. Blinnikov, V.A. Rubakov, V.B. Semikoz, and M.I. Vysotsky for many fruitful discussions and to G.G. Raffelt for collaboration in obtaining the results, concerning the self-energy neutrino operator in a magnetic field.WearethankfultoH.-T.JankaandB.Müllerforprovidinguswithdetailed data on radial distributions and time evolution of physical parameters in the supernovacore,obtainedintheirmodeloftheSNexplosion.Withawarmfeeling wewanttomentionthemanylivelydiscussionswithK.A.Ter-Martirosian,whose strong support in the 1990s proved to be crucial for our research group. A part of the results presented in this monograph was obtained in the study performed within the State Assignment for Yaroslavl University (Project # 2.7508.2013),andsupportedbytheRussianFoundationforBasicResearch(Project # 11-02-00394-a). Yaroslavl, March 2013 Alexander Kuznetsov Nickolay Mikheev Reference 1. A.V. Kuznetsov, N.V. Mikheev, Electroweak Processes in External Electro- magnetic Fields (Springer, New York, 2003) Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Solutions of the Dirac Equation in an External Electromagnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 The Ground Landau Level . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Crossed Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Density Matrix of the Plasma Electron in a Magnetic Field with the Fixed Number of a Landau Level. . . . . . . . . . . . . . . . 22 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Propagators of Charged Particles in External Active Media . . . . . 25 3.1 Propagators of Charged Particles in a Magnetic Field . . . . . . . . 25 3.1.1 Propagators in the Fock Proper-Time Presentation . . . . . 26 3.1.2 A Note on the Noninvariant Phase . . . . . . . . . . . . . . . . 29 3.1.3 Propagators in the Weak-Field Expansion . . . . . . . . . . . 30 3.1.4 Propagators in an Expansion over Landau Levels. . . . . . 31 3.1.5 Electron Propagator in a Strong Magnetic Field . . . . . . . 37 3.2 Propagators of Charged Particles in a Crossed Field . . . . . . . . . 38 3.3 Direct Derivation of the Electron Propagator in a Magnetic Field as the Sum over Landau Levels on a Basis of the Dirac Equation Exact Solutions. . . . . . . . . . . . . . . . . . . 39 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Particle Dispersion in External Active Media . . . . . . . . . . . . . . . . 45 4.1 Dispersion in Media: Main Definitions. . . . . . . . . . . . . . . . . . . 45 4.2 Photon Polarization Operator in an External Magnetic Field. . . . 48 4.3 Generalized Two-Point Loop Amplitude j!f(cid:2)f !j0 in an External Electromagnetic Field. . . . . . . . . . . . . . . . . . . . 52 4.3.1 Magnetic Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.2 Crossed Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Photon Polarization Operator in Plasma. . . . . . . . . . . . . . . . . . 60 vii viii Contents 4.5 Neutrino Self-energy Operator in Plasma . . . . . . . . . . . . . . . . . 66 4.5.1 Defnition of the Operator R(p) in Plasma . . . . . . . . . . . 68 4.5.2 Neutrino Additional Energy in Hot Dense Plasma. . . . . . 68 4.5.3 On the Neutrino Radiative Decay in Plasma. . . . . . . . . . 73 4.5.4 Ultra-High Energy Neutrino Dispersion in Plazma . . . . . 78 4.6 Neutrino Self-energy Operator in an External Magnetic Field. . . 89 4.6.1 Defnition of the Operator R(p) in a Magnetic Field . . . . 89 4.6.2 Low Landau Level Contribution into the Operator R(p). . . . . . . . . . . . . . . . . . . . . . . . . 93 4.6.3 Calculation of the Operator R(p) in a ‘‘Weak’’ Field. . . . 96 4.6.4 The Case of a Moderately Strong Field. . . . . . . . . . . . . 100 4.6.5 The Neutrino Operator R(p) in a Crossed Field . . . . . . . 106 4.6.6 Field-Induced Neutrino Magnetic Moment. . . . . . . . . . . 109 4.7 Neutrino Self-energy Operator in Magnetized Plasma . . . . . . . . 109 4.7.1 Neutrino Scattering on Magnetized Plasma . . . . . . . . . . 110 4.7.2 Neutrino Additional Energy in Magnetized Plasma. . . . . 114 4.7.3 Asymptotic Expressions for the Neutrino Additional Energy in Magnetized Plasma . . . . . . . . . . . . . . . . . . . 117 4.7.4 Induced Neutrino Magnetic Moment in Magnetized Plasma . . . . . . . . . . . . . . . . . . . . . . . . . 119 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5 Electromagnetic Interactions in External Active Media. . . . . . . . . 127 5.1 Photon Decay into an Electron–Positron Pair in a Strong Magnetic Field. . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.1.1 Direct Calculation Based on the Solutions of the Dirac Equation . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.1.2 Calculation Based on the Imaginary Part of the Loop Amplitude . . . . . . . . . . . . . . . . . . . . . . . . 132 5.2 The c!e(cid:2)eþ Decay in a Crossed Field . . . . . . . . . . . . . . . . . 133 5.2.1 Direct Calculation Based on the Solutions of the Dirac Equation . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.2.2 Calculation Based on the Imaginary Part of the Loop Amplitude . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3 Photon Emission by Electron in a Strong Magnetic Field. . . . . . 140 5.4 Electromagnetic Interactions of the Dirac Neutrino with a Magnetic Moment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.4.1 Magnetic Moment of the Dirac Neutrino and its Astrophysical Manifestations . . . . . . . . . . . . . . . 143 5.4.2 Neutrino Interaction with Background. . . . . . . . . . . . . . 146 5.4.3 The Rate of Creation of the Right-Handed Neutrino. . . . 147 5.4.4 Contributions of Plasma Components into the Neutrino Scattering Process . . . . . . . . . . . . . . . 152 5.4.5 Illustration: Completely Degenerate Plasma at T = 0. . . . 154 Contents ix 5.4.6 Uniform Ball Model for the Supernova Core . . . . . . . . . 157 5.4.7 Models of the Supernova Core with Radial Distributions of Physical Parameters: Limits on the Neutrino Magnetic Moment . . . . . . . . . . . . . . . . 159 5.4.8 Possible Effect of the Neutrino Magnetic Moment: Shock-Wave Revival in a Supernova Explosion . . . . . . . 163 5.4.9 Possible Effect of the Neutrino Magnetic Moment: Neutrino Pulsar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6 Neutrino-Electron Interactions in External Active Media . . . . . . . 175 6.1 The m!e(cid:2)Wþ Process in a Strong Magnetic Field . . . . . . . . . 175 6.2 The m!me(cid:2)eþ Process in a Strong Magnetic Field . . . . . . . . . 180 6.2.1 Calculation of the Differential Probability Based on the Solutions of the Dirac Equation . . . . . . . . . . . . . 180 6.2.2 Calculation Based on the Imaginary Part of the Loop Amplitude . . . . . . . . . . . . . . . . . . . . . . . . 182 6.2.3 The Total Process Probability. . . . . . . . . . . . . . . . . . . . 183 6.3 The m!me(cid:2)eþ Process in a Crossed Field. . . . . . . . . . . . . . . . 186 6.3.1 A Historical Overview. . . . . . . . . . . . . . . . . . . . . . . . . 186 6.3.2 Calculation of the Differential Probability Based on the Imaginary Part of the Loop Amplitude . . . . . . . . 187 6.3.3 The Total Process Probability. . . . . . . . . . . . . . . . . . . . 189 6.4 Possible Astrophysical Manifestations of the m!me(cid:2)eþ Process in an External Magnetic Field. . . . . . . . . . . . . . . . . . . 192 6.4.1 Mean Losses of the Neutrino Energy and Momentum. . . 192 6.4.2 Applicability of the Results Obtained in a Pure Magnetic Field for the Plasma Environment. . . . . . . . . . 194 6.4.3 Possible Astrophysical Manifestations. . . . . . . . . . . . . . 196 6.5 Neutrino in Strongly Magnetized Electron–Positron Plasma . . . . 197 6.5.1 What Do We Mean Under Strongly Magnetized e(cid:2)eþ Plasma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 6.5.2 Neutrino-Electron Processes in Strongly Magnetized Plasma: A Kinematic Analysis . . . . . . . . . . . . . . . . . . . 199 6.5.3 The Probability of the Process m!me(cid:2)eþ. . . . . . . . . . . 201 6.5.4 The Total Probability of the Neutrino Interaction with Magnetized Electron–Positron Plasma . . . . . . . . . . 205 6.5.5 Mean Losses of the Neutrino Energy and Momentum. . . 209 6.5.6 Integral Action of Neutrinos on a Magnetized Plasma. . . 212 6.5.7 Neutrino-Electron Processes Involving the Contributions of the Excited Landau Levels. . . . . . . . . . . . . . . . . . . . 215 6.5.8 Pulsar Natal Kick Via Neutrino-Triggered Magnetorotational Asymmetry . . . . . . . . . . . . . . . . . . . 220 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.