ebook img

Electrospinning of Nanofibers for Battery Applications PDF

163 Pages·2020·8.519 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electrospinning of Nanofibers for Battery Applications

Shengjie Peng P. Robert Ilango Electrospinning of Nanofibers for Battery Applications fi Electrospinning of Nano bers for Battery Applications Shengjie Peng P. Robert Ilango (cid:129) Electrospinning fi of Nano bers for Battery Applications 123 ShengjiePeng P. RobertIlango Department ofApplied Chemistry Department ofApplied Chemistry NanjingUniversity ofAeronautics NanjingUniversity ofAeronautics andAstronautics andAstronautics Nanjing, China Nanjing, China ISBN978-981-15-1427-2 ISBN978-981-15-1428-9 (eBook) https://doi.org/10.1007/978-981-15-1428-9 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSingapore PteLtd.2020 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Atpresent,nanotechnologyisofferingnewresultsandprospectstoguaranteeviable energy for the future on account of their unusual shapes, compositions, and physical/chemical properties. Remarkably, one-dimensional (1D) nanostructures, such as nanofibers, nanorods, and nanotubes, have drawn significant interest because of confinement effects and the structure-correlated properties. One-dimensional nanostructured material can be synthesized by using various techniques, including top-down synthesis and bottom-up method. Among them, electrospinning is an uncomplicated and versatile system which is used in gener- ating1Dnanostructures.Thepreparednanofiberscanbescaledupforassemblyon an industrial scale with tunable resulting characteristics like morphology and diameter. Interestingly, electrospun-based nanofibers deliver higher electrochemical per- formance for batteries, fuel cells, and supercapacitors. Though many reports have been published over the years on the electrospun nanofiber-based materials syn- thesis and their potential application, still the recent development of different nanofiber-based materials for battery applications is not overviewed. Therefore, in this book, we discussed hot and new trending growth of various materials such as metaloxides,metals,andcarbon-basedcompositenanofibersusingelectrospinning method. Undoubtedly, this book provides more achievement on materials per- spectivesfortheirfutureresearchanddevelopmentsintheenergystoragesystems. Nanjing, China Prof. Shengjie Peng Dr. P. Robert Ilango v Contents 1 Electrospinning Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction of Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Electrospinning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Instrument and Working Principle . . . . . . . . . . . . . . . . . . 4 1.2.2 Effect of Precursor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Effect of Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Types of Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Random Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 Aligned Fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.3 Core/Shell Fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Electrospinning of Nanofibers for Li-Ion Battery . . . . . . . . . . . . . . . 17 2.1 Li-Ion Battery Working Principle and Cell Structure. . . . . . . . . . . 17 2.2 Perspectives on Material Development. . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Cathode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Anode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Cathodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Free-Standing Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Binder-Free Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.1 Binder-Free Cathodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.2 Binder-Free Anodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5 Other Composites for Cathodes. . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.6 Other Composites for Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.6.1 Metal/CNF Composites . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.6.2 Metal Oxides/CNF Composites. . . . . . . . . . . . . . . . . . . . . 40 2.6.3 TMD/CNF Composites . . . . . . . . . . . . . . . . . . . . . . . . . . 45 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 vii viii Contents 3 Electrospinning of Nanofibers for Na-Ion Battery. . . . . . . . . . . . . . . 61 3.1 Na-Ion Battery Working Principle and Cell Structure . . . . . . . . . . 61 3.2 Perspectives on Material Development. . . . . . . . . . . . . . . . . . . . . 62 3.2.1 Cathodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2.2 Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Freestanding Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.3.1 Freestanding Cathodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.3.2 Freestanding Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4 Binder-Free Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4.1 Binder-Free Cathodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4.2 Binder-Free Anodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.5 Other Composites for Cathode . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.6 Other Composites for Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.6.1 Metal/CNF Composites . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.6.2 Metal Oxide/CNF Composites . . . . . . . . . . . . . . . . . . . . . 74 3.6.3 2D/CNF Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4 Electrospinning of Nanofibers for K-Ion Battery . . . . . . . . . . . . . . . 85 4.1 K-Ion Battery Working Principle and Cell Structure. . . . . . . . . . . 85 4.2 Perspectives on Material Development. . . . . . . . . . . . . . . . . . . . . 86 4.2.1 Cathode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.2.2 Anode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.3 Free-Standing Electrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3.1 Free-Standing Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.4 Binder-Free Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.1 Binder-Free Cathodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4.2 Binder-Free Anodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.5 Other Electrodes for Anode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.5.1 Metal/CNF Composites . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.5.2 2D/CNF Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5 Electrospinning of Nanofibers for Li–S Battery . . . . . . . . . . . . . . . . 101 5.1 Li–S Battery Working Principle and Cell Structure. . . . . . . . . . . . 101 5.2 Perspectives on Material Development. . . . . . . . . . . . . . . . . . . . . 102 5.2.1 Cathode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.2.2 Anode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2.3 Binder-Free Electrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.2.4 Binder-Free Cathodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.3 Free-Standing Electrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3.1 Free-Standing Cathodes . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Contents ix 5.4 Other Electrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.4.1 Interlayer for Li–S Batteries. . . . . . . . . . . . . . . . . . . . . . . 111 5.4.2 Metal Oxides/CNF Composite . . . . . . . . . . . . . . . . . . . . . 113 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6 Electrospinning of Nanofibers for Zn-Air Battery. . . . . . . . . . . . . . . 121 6.1 Zn-Air Battery Working Principle and Cell Structure . . . . . . . . . . 121 6.2 Perspectives on Material Development. . . . . . . . . . . . . . . . . . . . . 123 6.2.1 Anode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2.2 Cathode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3 Binder-Free Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.4 Free-Standing Electrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.5 Types of Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.5.1 ORR Electrocatalysts. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.5.2 OER Electrocatalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.5.3 Bi/Multifunctional Electrocatalysts . . . . . . . . . . . . . . . . . . 130 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7 Electrospinning of Nanofibers for Li-Air Battery . . . . . . . . . . . . . . . 141 7.1 Li-Air Battery Working Principle and Cell Structure. . . . . . . . . . . 141 7.2 Perspectives on Material Development. . . . . . . . . . . . . . . . . . . . . 142 7.2.1 Anode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 7.2.2 Cathode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.3 Binder Free Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.4 Free-Standing Electrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.5 Other Catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.5.1 Metal Oxides Electrocatalysts. . . . . . . . . . . . . . . . . . . . . . 146 7.5.2 Metal and Other Catalysts . . . . . . . . . . . . . . . . . . . . . . . . 148 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 8 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 About the Authors Prof.ShengjiePeng receivedhisPh.D.degreeatNankaiUniversity(P.R.China) in2010.FollowingapostdoctoralfellowshipwithProf.AlexYanandProf.Seeram Ramakrishna at Nanyang Technological University and National University of Singapore, he is now working as a professor at Nanjing University of Aeronautics and Astronautics. He has been working on functional nanomaterials in energy and environment for more than ten years. His current research interests include the design and development of nanomaterials and their applications in energy. Dr.P.RobertIlango obtainedhisPh.D.degreefromKyungHeeUniversity(South Korea) in 2016. He worked as a postdoc fellow at National Tsing-Hua University (Taiwan,2016–2018).HealsoworkedasapostdoctoralresearchfellowatNanjing University of Aeronautics and Astronautics (China, October 2018–January 2020) underthesupervisionProf.ShengjiePeng.Currently,heisworkingasapostdoctoral researchfellowattheUniversityofNorthDakota,USA.Hisresearchinterestsfocus onthepreparationofvariousnanostructuredmaterialsforenergystorageapplications. xi Chapter 1 Electrospinning Technology Abstract Inthischapter,wediscusstheinstrumentationandunderlyingprinciple ofelectrospinningtechniques.Eventhoughtherearemanymethodsoffabricating nanofibers,electrospinningisconceivablythemostversatileprocess.Materialssuch as polymer, composites, ceramic and metal nanofibers have been built using elec- trospinning directly or through post-spinning processes. We arranged the different types of electrospun nanofibers and their recent development including aligned, random,andcore–shellnanofibers.Finally,wereviewedthepossiblepotentialappli- cationssuchastissueengineering,watertreatmentandenergystorageapplications. This analysis may bring overall ideas related to electrospun preparation and their significantapplicationswiththeactualmechanism. · · Keywords Electrospinning Typesoffiber Potentialapplications 1.1 IntroductionofMaterials It is well known that the fast population growth and universal energy demand andchangesinclimateconcernsimposeastrategyrevolutiontorenewableenergy sources.Thegrowthofhigh-performanceenergystoragedeviceshasbeenagradually highclaimtoenableresourceful[1,2].Theextensiveapplicationofelectricvehicles requires finding substitute power sources with high power/energy densities, long cycliclifeandzero-emission.Batteriesarethedominantpowersourcetothemany portabledevices.Carbonmaterialsincludecarbonnanotube,graphene,andcarbon nanofibershavebeenbroadlystudiedduetotheiradmirablemultifunctionalactivi- ties.Interestingly,theyshowsgoodchemicalstability,excellentelectricalconductiv- itiesandlargesurfaceareas.Table1.1describesvariousmaterialandtheirapplica- tions[3–5].Carbonnanofibershavedifferentarrangementssubjectontheassembling styleofgraphenelayers.Thegraphenelayerscanbeperpendicular,inclinedoreven coiledalongthefiberaxis[6]Amorphouscarbonnanofiberscouldbeproducedbythe spinningofapolymerprecursor,accompaniedbycarbonizationatalow-temperature treatmentrespectively[7].Becauseofexceptionalproperties,thecarbonnanofibers havepresentedgreatprospectiveforlarge-scaleapplicationsinmanyareas,correctly ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicense 1 toSpringerNatureSingaporePteLtd.2020 S.PengandP.R.Ilango,ElectrospinningofNanofibersforBatteryApplications, https://doi.org/10.1007/978-981-15-1428-9_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.