ebook img

Electronic Scanned Array Design John S. Williams PDF

128 Pages·2016·5.89 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electronic Scanned Array Design John S. Williams

Electronic Scanned Array Design SCF01 John S. Williams The Aerospace Corporation (retired) [email protected] Slide 1 of 255 Course Objjectives • Provide a basic understanding of ESA design principles, history and applications – PPrreesseennttaattiioonn wwiillll ffooccuuss oonn aanntteennnnaa hhaarrddwwaarree – Radar antennas are the focus of this presentation • Communications and receive antennas differ onlyy in details – ESA functionality enables or enhances radar modes but radar modes will not be addressed in any detail Slide 2 SCF01 Electronic Scanned Array Design of 255 Abstract Design Principles and Approaches GGeneral design principles off aperture antennas are applied to the speciffic case off ESSA design. System applications set the framework for requirements allocation and flowdown. Antenna Architectures and Functional Partitioning The advantages and disadvantages of ESA and reflector antennas as well as ESA feeds for reflectors are compared and contrasted. Common ESA design issues are described, including array partitioning and subarrays, lattice tradeoffs, feed design, causes and mitigation of ssiiddeelloobbeess, bbeeaamm sstteeeerriinngg aapppprrooaacchheess aanndd tteecchhnniiqquueess ffoorr bbeeaamm sshhaappiinngg. NNuummeerriiccaall eexxaammpplleess using Matlab illustrate performance of specific designs. Practical Design Considerations EESSAA ppeerrffoorrmmaannccee iiss ccoonnssttrraaiinneedd bbyy tthhee sseelleeccttiioonn aanndd lliimmiittaattiioonnss ooff ssppeecciiffiicc ccoommppoonneennttss. Objectives of size, weight, power, thermal dissipation, performance and cost drive tradeoffs among radiating elements, T/R modules, monolithic microwave integrated circuits (MMICs), microwave distribution and packaging. Proposed and Operational Examples Recent radar satellite designs will be assessed to illustrate actual performance and design tradeoffs. Current L-band syystem ppropposals contrast different desiggn apppproaches. Slide 3 SCF01 Electronic Scanned Array Design of 255 Antennas •• OOnnee ooff tthhee mmoosstt iimmppoorrttaanntt ddeetteerrmmiinnaannttss ooff mmiiccrroowwaavvee ssyysstteemm (radar, communications, other) performance • Requirements are determined by system performance allocation and ffllooww-ddoowwnn • Attributes include: – Beam width, shape and sidelobes • UUnniiffoorrmm iilllluummiinnaattiioonn ssiiddeelloobbeess-1133 ddBB ((rreeccttaanngguullaarr aappeerrttuurree)) oorr -1177 ddBB ((cciirrccuullaarr aperture) are too high for most purposes – Instantaneous and tunable bandwidth – Size •• SSAARR ((ssqquuaarree)) vvss GGMMTTII ((rreeccttaanngguullaarr)) AAssppeecctt RRaattiiooss • Deployment – Thermal Dissipation – Weigght – Cost • Thermal dissipation and power consumption will restrict system duty factor Slide 4 SCF01 Electronic Scanned Array Design of 255 Electronicallyy Scanned Arrayy ((ESA)) • An ESA combines multiple elements with phase or time delays to form a beam in a specified direction – IInn ccoonnttrraasstt ttoo aa mmeecchhaanniiccaallllyy sstteeeerreedd aanntteennnnaa pphhyyssiiccaallllyy rroottaatteess an antenna to point a beam in a specified direction • Phase or time delayy is reqquired to scan the beam • Gain control is required for beam shaping • EESSAA’ss ccoommmmoonnllyy iinncclluuddee aammpplliiffiieerrss – overcome distribution and control loss – Replace transmitter power amplifier (TWTA) Slide 5 SCF01 Electronic Scanned Array Design of 255 Reflector Antenna Radar Block Diagram Exciter Transmitter al b FFrequency r mm a Data request Control &R eT fi em r ei n n g c e Processor uplexe Gi ntenn D A RRaaddaarr ddaattaa SSiiggnnaall PPrroocceessssoorr RReecceeiivveerr Receiver Protection ESA incorporates functions Power Supply shown in dashed box Slide 6 SCF01 Electronic Scanned Array Design of 255 Electronically Scanned Array Radar Block DDiiaaggrraamm TRM Exciter n) os iuti(d( TTRRMM bol TRM trinif s TRM DiMaM Data request Control &FF r Te iq m u ie n n g c y Processor B gic ng TTTRRRMMM Reference e Lomi r TRM &o aa r mff TRM m wea e TRM o B P TRM RRaaddaarr ddaattaa SSiiggnnaall PPrroocceessssoorr RReecceeiivveerr((ss)) TRM ESA incorporates functions Power Supply shown in dashed box Slide 7 SCF01 Electronic Scanned Array Design of 255 ESA Benefits • Multiple beams • Instantaneous beam steering (agile beam) – Reduces slew and settle time • Mainlobe shaping, sidelobe control and nulling for clutter and interference mitigation • Multiple phase centers for MTI & multi-channel SAR – EEnnaabblleess aannggllee ooff aarrrriivvaall mmeeaassuurreemmeenntt – Additional degrees of freedom for clutter and interference mitigation • Multiple concurrent radar modes. • Lower loss between amplifiers and free space • Inherent redundancy (multiple elements) – Graceful degradation • Electronic Attack (EA) with very high Effective Radiated Power (ERP) •• SStteeaalltthh – Better match to free space –much less reflection/reradiation • Antenna surface deformation (deliberate or accidental) may be compensated • Space combining (low loss) of solid state power amplifiers Slide 8 SCF01 Electronic Scanned Array Design of 255 ESA Performance Impprovement 26 -3 dB • Multiple Azimuth Beam 24 – Improved SAR resolution 2222 • MMullttiiplle EEllevattiion BBeam 20 – Improved stripmap area ) m raattee k 1188 (( e ← Boresight g – SCORE (SCan On n 16 a Receive) R 14 12 Sensor altitude is 10.0 km 10 Range to horizon is 357.3 km Boresight range is 20.0 km 8 Grazing angle = 30.0° -10 -5 0 5 10 Cross Rangge ((km)) Slide 9 SCF01 Electronic Scanned Array Design of 255 Technologgyy Environment • ESAs have recently become very prevalent for the sole reason that they have become much more affordable ((tthheeyy wweerree aallwwaayyss kknnoowwnn ttoo ooffffeerr ssiiggnniiffiiccaanntt bbeenneeffiittss bbuutt were unaffordable) • TT//RR mmoodduulleess aarree aa ssmmaallll ffrraaccttiioonn ooff rraaddaarr ssyysstteemm ccoosstt and a very small fraction of system cost Slide 10 SCF01 Electronic Scanned Array Design of 255 Aperture Design Slide 11 SCF01 Electronic Scanned Array Design of 255 Antenna Function • Antenna objective is to create a current/voltage distribution which creates a specified beam pattern or vv//vv. – Omni directional radio signals of little use (except for broadcasting) • Difficult to arrange in general – Arrays permit a sampled representation of current/voltage permiittiing allmost any ddesiiredd arrangement • Two design approaches – analysis and synthesis Slide 12 SCF01 Electronic Scanned Array Design of 255 Basic Apperture Shappes bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa • Sqquare apperture • RRoouunndd aappeerrttuurree – 4 by 8 wavelengths – 3 wavelengths radius – First sidelobe is -13.2 dB – First sidelobe at -17.8 dB – 3 dB beamwidth = ±0.866 λ/D – 3 dB beamwidth = ±1.03 λ/D – first null at ±λ/D – first null at ±1.22 λ/D From Balanis “AAnntteennnnaa TThheeoorryy” Chapter 11 Slide 13 SCF01 Electronic Scanned Array Design of 255 Analysis Regions ((eexxaacctt ttoo aapppprrooxxiimmaattee)) Fresnel or Fraunhofer Near Field Transition or Far Field Region Region Region a n n e ntn A Nominal Beamwidth FFoorrλλ== 33ccmm aanndd 00 1D62λ D4λ2 D2λ2 Dλ2 2Dλ2 D = 1 meter 2m 8m 17m 33m 67m D = 10 meter 208m 1,667m 3,333m 6,667m 833m Illustration from Lynch (© SciTech PublishinSgli,d Inec 1),4 SCF01 Electronic Scanned Array Design of 255 Reggions EEvanescentt NNear FFiielldd FFar FFiielldd Fresnel Fraunhofer NNeeaarr lliimmiitt 00 33λλ 22DD²//λλ Far limit 3λ 2D²/λ ∞ Power decay R-n 1 R-1 E and H No Yes Yes orthogonal ZZ == 337777 ΩΩ NNoo YYeess YYeess 0 •• LLaasseerr PPooiinntteerr • (cid:540) = 630 nm, D = 1 mm => farfield at 3 meters Slide 15 SCF01 Electronic Scanned Array Design of 255 Another Visualization λ 4 Slide 16 λ λ S3CF01 Electronic Scanned Array Design 2D²/ of 255 General Conceppts • LLiineariitty andd superposiittiion • Reciprocity (Lorenz) – System behavior is independent of direction of energy transfer, ie antenna pattern iis thhe same ffor transmiit andd receiive • Antenna pattern is the Fourier transform of aperture illumination – Discrete (sampled) vs continuous – The sample interval is the element spacing – λ/2 element spacing assures no grating lobes (Nyquist-Shannon sampling theorem) – RResolluttiion lliimiitt ((RRaylleiighh criitteriia)) – Round vs square • Projected aperture (cosine θ dependence) – Wheeler - Pozar • Polarization and principal planes • Raaddaar Raanggee Eqquuaattioon Slide 17 SCF01 Electronic Scanned Array Design of 255 Resolution • RRange measurementt iis ddiirecttlly rellattedd tto bbanddwiiddtthh – Wide bandwidth waveform (eg chirp) required • AAnnggllee mmeeaassuurreemmeenntt iiss ddiirreeccttllyy rreellaatteedd ttoo aanntteennnnaa ((aappeerrttuurree)) size – Can generate “synthetic” apertures larger than physical antenna ssiizzee bbyy eexxppllooiittiinngg oowwnn ppllaattffoorrmm mmoottiioonn • Angular resolution (Rayleigh criterion) – Coherent or non-coherent – Deconvolution of PSF allows higher (super) resolution subject to S/N – Consider two point sources (sinx/x) separated by small distance, fit siinx’’//x’’ andd ttakke ddiifffference, llookk att PPdd//PPffa – Elements spaced closer than (cid:540)/2 potentially provide better resolution Slide 18 SCF01 Electronic Scanned Array Design of 255 Projjected Apperture • Projected aperture is the apparent angular extent of the aperture as viewed from a specified direction • AAnttenna gaiin iis proporttiionall tto projjecttedd apertture • Harold A. Wheeler derived this relationship in an early ppaappeerr Broadside θ=30 θ=60 θ=90 Slide 19 θ=0 SCF01 Electronic Scanned Array Design of 255 Radar Rangge Eqquation • Radar range determined by antenna size (area), transmit power, receive noise figure and bandwidth P G262< t SNR = ((44::))3kkTT BBFFLLRR4 ee P = transmit power t G = antenna gain λλ= wavellengtthh σ= target cross section k = Boltzmann's constant TT = ssyysstteemm tteemmppeerraattuurree B = system bandwidth F = system noise figure L = system losses R = range to target Slide 20 SCF01 Electronic Scanned Array Design of 255

Description:
Design Principles and Approaches. G f f f S. General design principles of aperture antennas are applied to the specific case of ESA design. System applications set the framework for requirements allocation and flowdown. Antenna Architectures and Functional Partitioning. The advantages and
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.