ebook img

Electron Correlations in Molecules and Solids PDF

427 Pages·1991·16.005 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electron Correlations in Molecules and Solids

Springer Series in Solid-State Sciences Editors: M. Cardona P. Fulde. K. von Klitzing H.-J. Queisser Principles of Magnetic Resonance 26 Elastic Media with Microstructure I 3rd Edition By C. P. Slichter One-Dimensional Models. By I.A. Kunin 2 Introduction to Solid-State Theory 27 Superconductivity of Transition Metals 2nd Printing By O. Madelung Their Alloys and Compounds 3 Dynamical Scattering of X-Rays in By S. V. Vonsovsky, Yu.A. Izyumov, Crystals By Z. G. Pinsker .and E.Z. Kurmaev 4 Inelastic Electron Tunneling Spectroscopy 28 The Structure and Properties of Matter Editor: T. Matsubara Editor: T. Wolfram 29 Electron Correlation and Magnetism in 5 Fundamentals of Crystal Growth I Narrow-Band Systems Editor: T. Moriya Macroscopic Equilibrium and Transport Concepts. 2nd Printing 30 Statistical Physics I By F. Rosenberger Equilibrium Statistical Mechanics ByM. Toda, R. Kubo,N. Saito 6 Magnetic Flux Structures in Superconductors By R.P. Huebener 31 StatisticalPhysicsD Nonequilibrium Statistical Mechanics 2nd Edition 7 Green's Functions in Quantum Physics By R. Kubo, M. Toda, N. Hashitsume 2nd Edition By E.N. Economou 32 Quantum Theory of Magnetism 8 Solitons and Condensed Matter Physics 2nd Edition By R. M. White 2nd Printing Editors: A.R. Bishop and T. Schneider 33 Mixed Crystals By A. I. Kitaigorodsky 9 Photoferroelectrics By V. M. Fridkin 34 Phonons: Theory and Experiments I Lattice Dynamics and Models of 10 Phonon Dispersion Relations in Interatomic Forces. By P. Briiesch Insulators By H. Bilz and W. Kress 35 Point Defects in Semiconductors II n-Electron Transport in Compound Experimental Aspects Semiconductors By B.R. Nag By J. Bourgoin and M. Lannoo 12 The Physics of Elementary Excitations 36 Modem Crystallography DI By S. Nakajima, Y. Toyozawa, and R. Abe Crystal Growth 2nd Edition 13 The Physics of Selenium and Tellurium By A. A. Chernov Editors: E. Gerlach and P. Grosse 37 Modem Crystallography IV 14 Magnetic Bubble Technology 2nd Edition Physical Properties of Crystals By A.H. Eschenfelder Editor: L. A. Shuvalov 15 Modern Crystallography I 38 Physics of Intercalation Compounds Symmetry of Crystals. Editors: L. Pietronero and E. Tosatti Methods of Structural Crystallography ByB.K. Vainshtein 39 Anderson Localization Editors: Y. Nagaoka and H. Fukuyama 16 Organic MolecUlar Crystals Their Electronic States. By E. A. Silinsh 40 Semiconductor Physics An Introduction 5th Edition By K. Seeger 17 The Theory of Magnetism I Statics and Dynamics. 2nd Printing 41 The LMTO Method ByD.C. Mattis Muffin-Tin Orbitals and Electronic Structure By H. L. Skriver 18 Relaxation of Elementary Excitations Editors: R. Kubo and E. Hanamura 42 Crystal Optics with Spatial Dispersion, and Excitons 2nd Edition 19 Solitons. Mathematical Methods for By V. M. Agranovich and V. L. Ginzburg Physicists. 2nd Printing By G. Eilenberger 43 Structure Analysis of Point Defects in Solids by Multiple Magnetic Resonance Spectroscopy 20 Theory of Nonlinear Lattices By J.-M. Spaeth, J.R. Niklas, and R.H. Bartram 2nd Edition By M. Toda 44 Elastic Media with Microstructure D 21 Modem Crystallography D Three-Dimensional Models By I. A. Kunin Structure of Crystals By B. K. Vainshtein, V. M. Fridkin, 45 Electronic Properties of Doped Semiconductors and V. L. Indenbom By B.I. Shklovskii and A. L. Efros 22 Point Defects in Semiconductors I 46 Topological Disorder in Condensed Matter Theoretical Aspects Edi~ors: F. Yonezawa and T. Ninomiya By M. Lannoo and J. Bourgoin 47 statics and Dynamics of Nonlinear Systems 23 Physics in One Dimension Editors: G. Benedek, H. Bilz, and R. Zeyher Editors: J. Bernasconi, T. Schneider 48 Magnetic Phase Transitions 24 Physics in High Magnetic Fields Editors: M. Ausloos and R.J. Elliott Editors: S. Chikazumi and N. Miura 49 Organic Molecular Aggregates Electronic 25 Fundamental Physics of Amorphous Excitation and Interaction Processes Semiconductors Editor: F. Yonezawa Editors: P. Reineker, H. Haken, and H. C. Wolf 100 Springer Series in Solid-State Sciences Edited by Peter Fulde Springer Series in Solid-State Sciences Editors: M. Cardona P. Fulde K. von Klitzing H.-J. Queisser Managing Editor: H. K. V. Lotsch Volumes 1-89 are listed at the end ofthe book 90 Earlier and Recent Aspects of Superconductivity Editors: J. G. Bednorz and K. A. Muller 91 Electronic Properties of Conjugated Polymers m Basic Models and Applications Editors: H. Kuzmany, M. Mehring, and S. Roth 92 Physics and Engineering Applications of Magnetism Editors: Y. Ishikawa and N. Miura 93 Quasicrystals Editors: T. Fujiwara and T. Ogawa 94 Electronic Conduction in Oxides By N. Tsuda, K. Nasu, A. Yanase, and K. Siratori 95 Electronic Materials A New Era in Materials Science Editors: J. R. Chelikowsky and A. Franciosi 96 Electron Liquids By A. Isihara 97 Localization and Conf"mement of Electrons in Semiconductors Editors: F. Kuchar, H. Heinrich, and G. Bauer 98 Magnetism and the Electronic Structure of Crystals By V. A. Gubanov, A. I. Liechtenstein, and A. V. Postnikov 99 Electronic Properties of High-Tc Superconductors and Related Compounds Editors: H. Kuzmany, M. Mehring, and J. Fink 100 Electron Correlations in Molecules and Solids ByP. Fulde Peter Fulde Electron Correlations in Molecules and Solids With 127 Figures Springer- Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Professor P. Fulde MPI fur Festk6rperforschung Heisenbergstr. 1 W-7000 Stuttgart 80, FRG Series Editors: Professor Dr., Dres. h. c. Manuel Cardona Professor Dr., Dr. h. c. Peter Fulde Professor Dr., Dr. h. c. Klaus von Klitzing Professor Dr. Hans-Joachim Queisser Max-Planck-Instltut fiir Festkorperforschung, Heisenbergstrasse 1, W-7000 Stuttgart 80, Fed. Rep. of Germany Managing Editor: Dr. Helmut K. V. Lotsch Springer-Verlag, Tiergartenstrasse 17 W-6900 Heidelberg, Fed. Rep. of Germany ISBN-13:978-3-642-97311-6 e-ISBN -13:978-3-642-97309-3 DOl: 10.1007/978-3-642-97309-3 Library of Congress Cataloging-in-Publication Data Fulde, Peter, 1936- Electron correlations in molecules and solids 1 Peter Fulde. p. cm. (Springer series in solid-state sciences; 1(0) Includes bibliographical references and index. ISBN 3-540-53623-X (Berlin).-ISBN 0-387-53623-X (New York) 1. Quantum chemistry. 2. Solid state chemistry. I. Title. II. Series. QD462.F85 1991 541.2'8-dc20 91-24734 CIP This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions ofthe German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1991 Softcover reprint of the hardcover 1st edition 1991 The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and there fore free for general use. Typesetting: Macmillan, India 54/3140-543210-Printed on acid-free paper Preface Any participant in a quantum chemistry meeting will notice that the attendance of solid-state physicists is rather sparse, and the reverse holds true for solid-state physics conferences, where one will meet hardly any quantum chemists. This shows how little contact exists between these two very active and important fields of condensed matter research. This is regrettable because, as solid-state physics becomes more and more a materials science and as quantum chemists are able to treat larger and . larger molecules, the topics of mutual interest in these two fields are rapidly increasing. In order to change this situation, monographs are required that emphasize the features common to quantum chemistry and solid-state physics. It is the aim of this book to make a contribu tion here. An attempt is made to present the problem of electron correlations in molecules and solids in a unified form. For that we need a framework within which we can treat not only molecules and solids but also weakly and strongly correlated electrons. Such a framework is provided here. Because the termi nology is often quite different in quantum chemistry and solid-state physics we have tried to compromise by using vocabulary and notation which should be reasonably familiar to scientists in both fields. The book is divided into two parts. The first seven chapters concentrate on the various methods and techniques which are used to treat electron correla tions in molecules and solids, whereas Chaps. 8-14 deal mainly with appli cations. They range from atoms and molecules to semiconductors and metals, with special emphasis on transition metals. Particular attention is paid to strongly correlated electron systems, a topic to which the last three chapters are devoted. The Kondo effect and in particular heavy-fermion systems and the new high-temperature superconducting materials fall into that category. Without the fine cooperation and the support of Dr. H. Lotsch of Springer Verlag this book would have taken much longer to complete. Ms. D. Hollis, also of Springer-Verlag, made important improvements to the manuscript. I am thankful to both of them. Stuttgart P. Fulde March 1991 Acknowledgements I would like to thank a number of colleagues for years of cooperation on electronic correlations, for countless discussions, suggestions, and improve ments of my understanding of that phenomenon. My longest-standing coopera tion on this subject is with Dr. G. Stollhoff, and that with Drs. K.W. Becker, P. Horsch, 1. Keller, H. Stoll, and G. Zwicknagl has existed almost as long. The collaboration with Drs. M. Bohm, W. Borrmann, W. Brenig, M. Chaumet, Y. Kakehashi, A.M. OleS, E. Runge, K. Rosciszewski, and F. Pfirsch has been particularly rewarding for me. I am very grateful to Dr. R. Eder for suggestions on Chap. 14 and Appendices Band 1. Dr. W. Stephan contributed to the clarification of my understanding of strongly correlated electrons. I greatly appreciated the critical reading of parts of the manuscript by A. Heilingbrunner K. Kist!, C. May, U. Muschelknautz, T. Schork, K. von Szczepanski, and P. Unger. Special thanks are due to Mrs. Maria Claudia Benassi who improved the English of the original manuscript substantially. Finally, I would like to thank Mrs. K. Gaupp and Mrs. M. Kusterer for typing the manuscript. Contents 1. Introduction..................................................... 1 2. The Independent-Electron Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Starting Hamiltonian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Basis Functions and Basis Sets. . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . 8 2.3 Self-Consistent Field Approximation ................ . . . . . . . . .. 10 2.4 Simplified SCF Calculational Schemes 2.4.1 Semi-empirical SCF Methods ... " . . . . . . .. . . . . . . .. . . .. . .. 19 2.4.2 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 21 2.5 Koopmans' Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 2.6 Homogeneous Electron Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26 2.7 Local Exchange Potential-The X ~ Method. . . . . . . . . . . . . . . . . . .. 32 2.8 Shortcomings of the Independent-Electron Approximation. . . . .. 33 2.9 Unrestricted SCF Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 37 3. Density Functional Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39 3.1 Thomas-Fermi Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40 3.2 Hohenberg-Kohn-Sham Theory............................... 41 3.3 Local-Density Approximation.. . .. . . . . . .. . . . . . . . . . .. . . . . . . . . .. 44 3.4 Results for Atoms, Molecules, and Solids. . . . . . . . . . . . . . . . . . . . . .. 49 3.5 Extensions and Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 52 4. Quantum-Chemical Approach to Electron Correlations. .. . . . . . . .. . . .. 61 4.1 Configuration Interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 63 4.1.1 Localized-Orbital Methods. . . . . . . . . . . . . .. . .. . . . .. . .. . . .. 66 4.1.2 Selection of Double Substitutions. . . . . . . . . . .. . . . .. . . . . . .. 68 4.1.3 Multireference CI. .. . . . . . . . . . . . . . . .. . . . .. . .. . . . . . . . . . ... 70 4.2 Coupled-Cluster Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 74 4.3 Many-Body Perturbation Theory............................. 77 5. The Projection Technique and Use of Local Operators. . . . . . . . . . . . . .. 83 5.1 The Projection Technique. . . . . . . . . . . . . . . .. . . .. . .. . . . . . . . . . . .. 84 5.2 Local Operators............................................. 90 5.2.1 Physical Interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 92 viii Contents 5.2.2 Comparison with Other Methods ......................... 95 5.3 Simplified Correlation Calculations ............................. 97 6. Excited States ................................................... 101 6.1 CI Calculations and Basis Set Requirements ................... 102 6.2 Green's Function Method .................................... 104 6.2.1 Perturbation Expansions ................................ 109 6.2.2 The Projection method .................................. 113 6.3 Local Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 117 7. Finite-Temperature-Techniques .................................... 121 7.1 The Statistical Operator ...................................... 122 7.2 Functional-Integral Method .................................. 127 7.2.1 Static Approximation ................................... 129 7.3 Monte Carlo Methods . . .. . . . . . . . . . . . .. . . . . . . .. . . . .. . .. . . . . .. 132 7.3.1 Sampling Techniques ................................... 133 7.3.2 Ground-State Energy ................................... 135 8. Correlations in Atoms and Molecules .............................. 141 8.1 Atoms ...................................................... 142 8.2 Hydrocarbon Molecules ...................................... 147 8.2.1 Analytic Expressions for Correlation-Energy Contributions .......................................... 149 8.2.2 Simplified Correlation Calculations ...................... 151 8.3 Molecules Consisting of First-Row Atoms ........... " ........ 160 8.4 Strength of Correlations in Different Bonds .................... 164 8.5 Polymers .................................................... 168 8.5.1 Polyethylene ........................................... 168 8.5.2 Polyacetylene .......................................... 168 8.6 Photoionization Spectra ...................................... 174 9. Semiconductors and Insulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 179 9.1 Ground-State Correlations. ................................... 180 9.1.1 Semi-empirical Correlation Calculations ... , .............. 180 9.1.2 Ab Initio Calculations .................................. 187 9.2 Excited States ............................................... 190 9.2.1 Role of Nonlocal Exchange .............................. 192 9.2.2 The Energy Gap Problem ............................... 194 9.2.3 Hedins's G W Approximation ............................ 203 10. Homogeneous Metallic Systems ................................... 211 10.1 Fermi-Liquid Approach ..................................... 212 10.2 Charge Screening and the Random Phase Approximation ...... 221 10.3 Spin Fluctuations ........................................... 230 Contents ix ll. Transition Metals ................................................ 241 11.1 Correlated Ground State .................................... 242 11.2 Excited States .............................................. 250 11.3 Finite Temperatures ........................................ 251 11.3.1 Single-Site Approximation ............................. 256 11.3.2 Two-Site Approximation .............................. 262 11.3.3 Beyond the Static Approximation ...................... 263 12. Strongly Correlated Electrons ..................................... 267 12.1 Molecules .................................................. 268 12.2 Kondo Effect ............................................... 273 12.2.1 Variational Treatment of the Anderson Hamiltonian .... 274 12.2.2 Schrieffer-Wolff Transformation. ....................... 280 12.2.3 Kondo Divergency ................................... 282 12.2.4 Fermi-Liquid Description ............................. 285 12.3 Hubbard Hamiltonian ...................................... 288 12.3.1 The Limits of One Dimension and Infinite Dimensions .. 290 12.3.2 Hubbard's Solution ................................... 293 12.3.3 Gutzwiller's Wavefunction and Approximation .......... 298 12.3.4 Slave Bosons in the Mean-Field Approximation ......... 302 12.3.5 Kanamori's t-Matrix Approach ........................ 305 13. Heavy-Fermion Systems .......................................... 309 13.1 The Fermi Surface and Quasiparticle Excitations .............. 311 13.2 Model Hamiltonian and Slave Bosons ........................ 316 13.3 Noncrossing Approximation ................................. 323 13.4 Variational Wavefunctions ................................... 328 13.5 Quasiparticle Interactions ................................... 331 13.6 Quasiparticle-Phonon Interactions Based on Strong Correlations ......................................... 333 14. Superconductivity and the High-Tc Materials. ....................... 337 14.1 The Superconducting State .................................. 338 14.1.1 Pair States ........................................... 341 14.1.2 BCS Groundstate. .................................... 344 14.1.3 Pair Breaking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 14.2 Electronic Structure of the High-Tc Materials ................. 351 14.3 2D Heisenberg Antiferromagnet .............................. 358 14.3.1 Ground-State Energy ................................. 358 14.3.2 Motion of a Hole ..................................... 363 14.4 Electronic Excitations in the Cu-O Planes .................... 367 Appendices ...................................................... 377 A. Relation Between Exc [p] and the Pair Distribution Function .... 377

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.