ebook img

Electromechanics and MEMS PDF

582 Pages·2013·15.813 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electromechanics and MEMS

more information - www.cambridge.org/9780521764834 ElectromechanicsandMEMS Offering a consistent, systematic approach to capacitive, piezoelectric, and magnetic MEMS, this textbook equips students to design and develop practical, system-level MEMSmodels. (cid:2) Includesaconciseyetthoroughtreatmentoftheunderlyingprinciplesofelectrome- chanicaltransduction. (cid:2) Makesextensiveuseofeasy-to-interpretelectricalandmechanicalanalogs,suchas electricalcircuits,electromechanicaltwo-portmodels,andthecascadeparadigm. (cid:2) Each chapter features extensive worked examples, and numerous homework problems. ThomasB.JonesisProfessorofElectricalEngineeringattheUniversityofRochester. Anexperiencededucatorinvolvedinteachingforover40years,hisresearchhasfocused onelectricfield-mediatedmanipulationandtransportofparticlesandliquids.Heholds aPh.D.fromMIT,istheauthorofElectromechanicsofParticles(CambridgeUniversity Press,1995)andisaFellowoftheIEEE. Nenad G. Nenadic is a Research Associate Professor at the Rochester Institute of Technology. His career, spanning both industry and academia, has involved him in many aspects of MEMS, including design and analysis, system-level simulation, test development,andmarketing.HeholdsaPh.D.fromtheUniversityofRochester,where heassistedintheteachingofgraduate-levelMEMScourses. “Thisisanexcellenttextbookpresentingthefundamentalsofelectromechanicsrequiredbyevery practicing MEMS engineer. The authors treat the arduous concepts of coupled electrical and mechanical systems simultaneously with lucidity and a thorough pedagogical rigor that comes fromdeepappreciationofthefieldandthelovetoimpartthatknowledgeasateacher.Thebook elucidatestheconceptswithverytopicalexamplesofmicroelectromechanicalsystemssuchas MEMSmicrophones,combdriveactuators,gyroscopes,energyharvesters,andpiezoelectricand magneticdevices,includingMATLABmodelsandacomprehensivesetofproblemsattheendof eachchapter.” SrinivasTadigadapa,ThePennsylvaniaStateUniversity “Afantasticbookforthestudentseekingasolidfoundationinelectromechanicaldevicedesign andanessentialreferencefortheexpertMEMSengineer.JonesandNenadicpresentthefunda- mentaltheorybehindelectromechanicaltransduction,withafocusoncapacitivedriveandsense microsystems.Theauthorssystematicallyframethedevicefundamentalsintorealworldmicro scaledeviceapplicationsthatproviderelevancetotheunderlyingphysics.Thisbookcapturesand dutifullyexplainsthefoundationalphysicsatworkintheMEMSdevicesweoftenunknowingly usedailyinourautomobiles,mobilephonesandelectronicdevices.” ChrisKeimel,GEGlobalResearch “ElectromechanicsandMEMSisathoroughtreatmentoffundamentalMEMSanalysisforboth thestudentandthepractitioner.Thereadersarepresentedwiththetoolstomethodicallybuild systemmodelsthatarecomprehensiveyetmanageable.” EricChojnacki,MEMSIC,Inc. Electromechanics and MEMS THOMAS B. JONES UniversityofRochester,NewYork NENAD G. NENADIC RochesterInstituteofTechnology,NewYork CAMBRIDGEUNIVERSITYPRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521764834 (cid:2)C CambridgeUniversityPress2013 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2013 PrintedandboundintheUnitedKingdombytheMPGBooksGroup AcatalogrecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloginginPublicationdata Jones,T.B.(ThomasByron),1944– ElectromechanicsandMEMS/ThomasB.Jones,UniversityofRochester,NewYork, NenadG.Nenadic,RochesterInstituteofTechnology. pages cm Includesbibliographicalreferences. ISBN978-0-521-76483-4(hardback) 1.Microelectromechanicalsystems. I.Nenadic,NenadG. II.Title. TK7875.J66 2012 621.381–dc23 2012021830 ISBN978-0-521-76483-4Hardback Additionalresourcesforthispublicationatwww.cambridge.org/mems CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Preface pagexiii 1 Introduction 1 1.1 Background 1 1.2 Someterminology 2 1.3 Electromechanicalsystems 3 1.4 Conclusion 7 Problems 7 Reference 9 2 Circuit-basedmodeling 10 2.1 Fundamentalsofcircuittheory 10 2.1.1 Motivation 10 2.1.2 Kirchhoff’scurrentandvoltagelaws 11 2.1.3 Circuitelements 12 2.1.4 Tellegen’stheorem:powerandenergy 12 2.1.5 ACcircuits,impedance,andadmittance 14 2.2 Circuitmodelsforcapacitivedevices 15 2.2.1 BasicRCcircuitbuildingblock 16 2.2.2 Theseriescapacitivecircuit 17 2.2.3 Theparallelcapacitivecircuit 18 2.2.4 Specialcases:seriesandparallelcapacitance 20 2.2.5 Summary 20 2.3 Two-portnetworks 22 2.3.1 Impedanceandadmittancematrices 22 2.3.2 Thetransmissionmatrix 24 2.3.3 Cascadedtwo-portnetworks 25 2.3.4 Someimportanttwo-portnetworks 27 2.3.5 Thegyratorandthetransformer 29 2.3.6 Embeddednetworks 30 2.3.7 Sourceandimpedancereflection 32 2.4 Summary 34 Problems 34 References 43 vi Contents 3 Capacitivelumpedparameterelectromechanics 44 3.1 Basicassumptionsandconcepts 44 3.1.1 Thelosslesselectromechanicalcoupling 45 3.1.2 Statevariablesandconservativesystems 46 3.1.3 Evaluationofenergyfunction 46 3.1.4 Forceofelectricalorigin 48 3.2 Coenergy–analternateenergyfunction 49 3.2.1 Definitionofcoenergy 49 3.2.2 Integralevaluationofcoenergy 50 3.2.3 Evaluationofforceofelectricalorigin 51 3.3 Couplingswithmultipleports 52 3.3.1 Energyconservationrelation 53 3.3.2 Systemwithtwoelectricalandtwomechanicalports 54 3.4 Basiccapacitivetransducertypes 56 3.4.1 Variable-gapcapacitors 56 3.4.2 Variable-areacapacitors 58 3.4.3 Comparisonofvariable-gapandvariable-areaactuators 60 3.4.4 Transducerstroke 62 3.4.5 Thecomb-drivegeometry 64 3.4.6 Anothervariable-areacapacitor 65 3.5 Rotationaltransducers 66 3.5.1 Modelingrotationalelectromechanics 67 3.5.2 Torqueofelectricalorigin 68 3.5.3 Anexample 68 3.6 Electrets 71 3.7 Non-linearconservativeelectromechanicalsystems 75 3.7.1 Conservationlawsforcapacitivedevices 75 3.7.2 Non-linearoscillationsandstability 77 3.7.3 Numericalsolutions 79 3.7.4 Constantchargeconstraint 80 3.7.5 Discussion 83 3.8 Summary 83 Problems 84 References 96 4 Small-signalcapacitiveelectromechanicalsystems 97 4.1 Background 97 4.2 Linearizedelectromechanicaltransducers 98 4.2.1 Somepreliminaries 98 4.2.2 Linearizationintermsofenergyandcoenergy 99 4.3 Electromechanicaltwo-portnetworks 101 4.3.1 Thetransducermatrix 101 4.3.2 Thelinearcapacitivetransducer 103 Contents vii 4.3.3 Importantspecialcases 105 4.3.4 Transducerswithangulardisplacement 105 4.3.5 Multiportelectromechanicaltransducers 107 4.4 Electromechanicalcircuitmodels 109 4.4.1 Analogousvariables 109 4.4.2 M-formequivalentelectromechanicalcircuit 110 4.4.3 N-formequivalentelectromechanicalcircuit 112 4.4.4 Moreaboutthecascadeparadigm 113 4.5 ReconciliationwithNeubert 113 4.6 Externalconstraints 114 4.6.1 Mechanicalconstraints 115 4.6.2 Electricalconstraints 118 4.6.3 Fullyconstrainedelectromechanicaltransducers 118 4.6.4 Otherusefulmatrixforms 120 4.7 Applicationsofelectromechanicaltwo-porttheory 121 4.7.1 Applicationofsourceandimpedancereflection 121 4.7.2 Acapacitivemicrophone 123 4.7.3 Electromechanicaltransferfunctions 125 4.7.4 Acomb-driveactuator 126 4.7.5 Thethree-platecapacitivesensor 127 4.7.6 Linearmodelforelectrettransducer 130 4.8 Stabilityconsiderations 132 4.8.1 Preliminarylookatstability 132 4.8.2 Generalstabilitycriteria 133 4.8.3 Thepull-ininstabilitythreshold 137 4.8.4 Aphysicalinterpretationofinstability 138 4.9 Summary 140 Problems 141 References 149 5 Capacitivesensingandresonantdrivecircuits 150 5.1 Introduction 150 5.2 Basicsofoperationalamplifiers 151 5.3 Invertingamplifiersandcapacitivesensing 152 5.3.1 Basicinvertingconfiguration 153 5.3.2 One-sidedhigh-impedance(charge)amplifier 154 5.3.3 Variable-gapandvariable-areacapacitors 157 5.3.4 Effectofop-ampleakagecurrent 157 5.4 Differential(three-plate)capacitancesensing 163 5.4.1 DCfeedbackforthedifferentialconfiguration 165 5.5 AC(modulated)sensing 166 5.5.1 Capacitivesensorexcitedbyzero-meansinusoidalvoltage 167 5.5.2 Two-platecapacitivesensingwithACexcitation 169 viii Contents 5.5.3 AnalysisincludingthefeedbackresistanceR 170 f 5.5.4 AMsignaldemodulation 172 5.5.5 DifferentialACsensing 173 5.5.6 Synchronousdemodulation 174 5.6 ACsensorsusingsymmetricsquare-waveexcitation 175 5.6.1 Transducersusingsquare-waveexcitation 175 5.6.2 Three-platesensingusingsquare-waveexcitation 176 5.7 Switchedcapacitancesensorcircuits 178 5.7.1 Basicsofswitched-capacitorcircuits 178 5.7.2 Simplesensorbasedonswitchedcapacitance 179 5.7.3 Half-wavebridgesensorusingswitchedcapacitance 180 5.8 NoiseincapacitiveMEMS 183 5.8.1 Commonnoisecharacteristics 184 5.8.2 Filterednoise 185 5.8.3 Noisytwo-ports 186 5.8.4 Electricalthermalnoise 186 5.8.5 Mechanicalthermalnoise 189 5.8.6 1/famplifiernoise 191 5.8.7 Effectofmodulationon1/fnoise 192 5.9 ElectrostaticdrivesforMEMSresonators 193 5.9.1 Mechanicalresonators 194 5.9.2 Driveelectrodeswithsinusoidaldrive 194 5.9.3 Non-harmonicdrives 197 5.9.4 Senseelectrodes 200 5.9.5 HarmonicoscillatorsbasedonMEMSresonators 200 5.9.6 Phase-lockedloopdrives 208 5.9.7 PLLsystemlinearization 210 5.10 Summary 213 Problems 214 References 222 6 Distributed1-Dand2-Dcapacitiveelectromechanicalstructures 223 6.1 Introduction 223 6.2 Amotivatingexample–electrostaticactuationofacantilevered beam 224 6.2.1 Problemdescription 224 6.2.2 Derivationofthelumpedparametermodel 225 6.2.3 Evaluationofequivalentspringconstant,mass,andmechanical damping 228 6.2.4 Resonanceofacantileveredbeam 229 6.2.5 Recapitulationoflumpedparametermodelidentification procedure 233

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.