ebook img

Electromagnetic Waves and Antennas for Biomedical Applications PDF

337 Pages·2022·17.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electromagnetic Waves and Antennas for Biomedical Applications

HEALTHCARE TECHNOLOGIES SERIES 33 Electromagnetic Waves and Antennas for Biomedical Applications Othervolumesinthisseries: Volume1 NanobiosensorsforPersonalizedandOnsiteBiomedicalDiagnosis P.Chandra(Editor) Volume2 MachineLearningforHealthcareTechnologiesD.A.Clifton(Editor) Volume3 PortableBiosensorsandPoint-of-CareSystemsS.E.Kintzios(Editor) Volume4 BiomedicalNanomaterials:FromdesigntoimplementationT.JWebster andH.Yazici(Editors) Volume6 ActiveandAssistedLiving:TechnologiesandApplicationsF.Florez- RevueltaandA.A.Chaaraoui(Editors) Volume7 SemiconductorLasersandDiode-BasedLightSourcesforBiophotonics P.E.AndersenandP.M.Petersen(Editors) Volume9 HumanMonitoring,SmartHealthandAssistedLiving:Techniquesand technologiesS.Longhi,A.Monteriu` andA.Freddi(Editors) Volume13 HandbookofSpeckleFilteringandTrackinginCardiovascularUltrasound ImagingandVideoC.P.Loizou,C.S.PattichisandJ.D’hooge(Editors) Volume14 SoftRobotsforHealthcareApplications:Design,modelling,andcontrol S.Xie,M.ZhangandW.Meng Volume16 EEGSignalProcessing:Featureextraction,selectionandclassification methodsW.Leong Volume17 Patient-CenteredDigitalHealthcareTechnology:Novelapplicationsfor nextgenerationhealthcaresystemsL.GoldschmidtandR.M.Relova(Editors) Volume19 Neurotechnology:Methods,advancesandapplicationsV.deAlbuquerque, A.AthanasiouandS.Ribeiro(Editors) Volume20 SecurityandPrivacyofElectronicHealthcareRecords:Concepts, paradigmsandsolutionsS.Tanwar,S.TyagiandN.Kumar(Editors) Volume23 AdvancesinTelemedicineforHealthMonitoring:Technologies,design andapplicationsTarikA.Rashid,ChinmayChakrabortyandKymFraser Volume24 MobileTechnologiesforDeliveringHealthcareinRemote,Ruralor DevelopingRegionsP.Ray,N.Nakashima,A.Ahmed,S.RoandY.Soshino (Editors) Volume26 WirelessMedicalSensorNetworksforIoT-BasedeHealthFadiAl-Turjman (Editor) Volume29 BlockchainandMachineLearningfore-HealthcareSystemsBalamurugan Balusamy,NaveenChilamkurti,LuciaAgnesBeenaandPoongodiT(Editors) Volume39 DigitalToolsandMethodstoSupportHealthyAgeingPradeepKumarRay, Siaw-TengLiawandJArturSerano(Editors) Electromagnetic Waves and Antennas for Biomedical Applications Edited by Lulu Wang The Institution of Engineering andTechnology PublishedbyTheInstitutionofEngineeringandTechnology,London,UnitedKingdom TheInstitutionofEngineeringandTechnologyisregisteredasaCharityinEngland& Wales(no.211014)andScotland(no.SC038698). †TheInstitutionofEngineeringandTechnology2022 Firstpublished2021 ThispublicationiscopyrightundertheBerneConventionandtheUniversalCopyright Convention.Allrightsreserved.Apartfromanyfairdealingforthepurposesofresearch orprivatestudy,orcriticismorreview,aspermittedundertheCopyright,Designsand PatentsAct1988,thispublicationmaybereproduced,storedortransmitted,inany formorbyanymeans,onlywiththepriorpermissioninwritingofthepublishers,orin thecaseofreprographicreproductioninaccordancewiththetermsoflicencesissued bytheCopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethose termsshouldbesenttothepublisherattheundermentionedaddress: TheInstitutionofEngineeringandTechnology MichaelFaradayHouse SixHillsWay,Stevenage Herts,SG12AY,UnitedKingdom www.theiet.org Whiletheauthorsandpublisherbelievethattheinformationandguidancegiveninthis workarecorrect,allpartiesmustrelyupontheirownskillandjudgementwhenmaking useofthem.Neithertheauthorsnorpublisherassumesanyliabilitytoanyoneforany lossordamagecausedbyanyerrororomissioninthework,whethersuchanerroror omissionistheresultofnegligenceoranyothercause.Anyandallsuchliabilityis disclaimed. Themoralrightsoftheauthorstobeidentifiedasauthorsofthisworkhavebeen assertedbytheminaccordancewiththeCopyright,DesignsandPatentsAct1988. BritishLibraryCataloguinginPublicationData AcataloguerecordforthisproductisavailablefromtheBritishLibrary ISBN978-1-83953-167-5(hardback) ISBN978-1-83953-168-2(PDF) TypesetinIndiabyMPSLimited PrintedintheUKbyCPIGroup(UK)Ltd,Croydon Contents Abouttheeditor xi 1 Point-spread functionsin inverse scatteringandimage reconstruction withmicrowaves andmillimeter waves 1 Daniel Tajik, RominaKazemivalaand Natalia K. Nikolova 1.1 Introduction 1 1.2 System point-spread function (PSF) 2 1.3 Models of scattering in terms of point-spread functions 6 1.3.1 Scattering models using convolution 6 1.3.2 Field-based electromagnetic scatteringmodels 7 1.3.3 Electromagnetic scattering interms of S-parameters 9 1.3.4 Electromagnetic scattering models for real-time inversion 11 1.4 Extracting the scattering signals from measured data 15 1.5 Reconstructionwith quantitative microwave holography 18 1.5.1 Microwave holography with analytical PSFs 18 1.5.2 Basics of quantitative microwave holography (QMH) 19 1.6 Basics of scattered power mapping(SPM) 22 1.7 Examples of QMHand SPM 26 1.8 Advanced signal processingfor improved image reconstruction 29 1.8.1 Apodization filtering 29 1.8.2 Low-pass filtering in the Fourier domain 31 1.8.3 PSFtranslation 34 1.8.4 Frequency normalization 36 1.9 Image reconstruction of breast phantom 38 1.10 Conclusions 42 Acronyms 43 References 43 2 Solvinginverse scattering problems in biomedical imaging with contraction integral equation models 47 Kuiwen Xu, LuZhangand YuZhong 2.1 Introduction to inverse scatteringproblems 48 2.2 Formulation of the forward problems 50 2.3 Formulation of the inverse problems 53 2.3.1 InversionswithLSIE and with CIE-I 53 vi Electromagnetic waves and antennas for biomedical applications 2.3.2 Regularization with TSOMand MR 57 2.3.3 Numerical Test I 59 2.4 Inversion with inhomogeneousbackground 63 2.4.1 Inversionswith D-LSIE and with D-CIE-I 63 2.4.2 FFT-TSOM-based inversionswithD-LSIE and D-CIE-I 65 2.4.3 Numerical Test II 66 2.4.4 Numerical test IIIfor the biomedical microwave imaging 69 2.5 Conclusion 73 References 73 3 Electromagnetic sources for THz imaging andDNPNMR spectroscopy 77 Sergey Ponomarenko, Sergey Kishko, Alexander Likhachev, Eduard Khutoryanand Alexei Kuleshov 3.1 Introduction 78 3.2 Sources of THz radiation: vacuum electron devices and solid-state oscillators 79 3.3 Compact frequency-tunable THz oscillators: backward-wave oscillator and a clinotron 88 3.3.1 Operating principles 88 3.3.2 Excitation of hybridspace-surface waves ina clinotron and BWO 92 3.4 Applicationof THz oscillatorsin DNPNMRspectroscopy 97 3.5 THz-imaging systems: schemes and achievements 101 3.5.1 Imaging technologies in medicine 101 3.5.2 Principles of an interaction of THz waves with biological tissues 102 3.5.3 Pulsed and continuous-wave mode of THz imaging 103 3.5.4 Reflective and transmission configuration of THz imaging systems 105 3.5.5 Basics of data-processing methods 107 Glossary 109 References 110 4 UWBantennasfor medical imaging applications 125 Khalil H.Sayidmarie and YasserA. Alsaidosh 4.1 Introduction 125 4.2 Medical imaging systems 125 4.3 Fractal UWB antennas 126 4.3.1 The fractal rectangular monopole antenna 127 4.3.2 The fractal triangular monopole antenna 130 4.4 The self-complementary UWB antennas 133 4.4.1 Circular disk monopole antenna with straight microstrip feed line—antenna-i 136 Contents vii 4.4.2 Circular dipole antenna with bent microstrip feed line—antenna-ii 137 4.4.3 Self-complementarycircular dipole antenna with bent microstrip feed line—antenna-iii 138 4.4.4 Experimental validations 141 4.4.5 Further developments 148 4.5 Self-complementaryplanar bow-tie antenna forUWBapplications 150 4.5.1 Design methodology 151 4.5.2 The traditional bow-tie antenna (TBT antenna) 151 4.5.3 The self-complementary bow-tie antenna (SCBT antenna) 151 4.5.4 The fractal self-complementary bow-tie antenna (FSCBT antenna) 154 References 160 5 Antennasandwearable sensorsfor biomedical diagnostics andtherapeutic applications 165 Sachin Kumarand Lulu Wang 5.1 Introduction 165 5.2 Diagnostic technologies/techniques 165 5.2.1 Wireless body area network 165 5.2.2 Implantable electronic medical devices 167 5.3 Implant communication technologies 168 5.3.1 Inductive couplingcommunication 170 5.3.2 Intra-body communication 171 5.3.3 Molecular communication 171 5.3.4 Optical communication 171 5.3.5 Radio frequency communication 172 5.3.6 Ultrasound communication 172 5.4 Cardiac pacemakers 172 5.4.1 Conventional pacemaker 172 5.4.2 Leadless pacemaker 173 5.5 Microwaves for medical applications 174 5.5.1 Microwave medical diagnosis 174 5.5.2 Data telemetry 175 5.6 Microwave medical treatment 177 5.7 Telemedicine: challenges and opportunities 177 5.8 Future perspectives 178 References 179 6 Review of practical antennasfor microwave andmillimetre-wave medical imaging 185 WasanH.Althubitat Al Amro and Boon-Chong Seet 6.1 Introduction 185 6.2 RFMItechniques and signal-processing algorithms 187 viii Electromagnetic waves and antennas for biomedical applications 6.3 Antennasforbreast cancer detection 189 6.3.1 Vivaldi antennas 189 6.3.2 Fractal antennas 189 6.3.3 Planar monopole antennas 190 6.4 Antennasforbrain cancer and stroke detection 193 6.4.1 Antennas forbrain cancer detection 194 6.4.2 Antennas forbrain stroke detection 195 6.5 Antennasforlungcancer and fluid accumulation detection 196 6.5.1 Antennas forlungcancer detection 198 6.5.2 Antennas forlungfluid accumulation detection 199 6.6 Antennasforskin cancer detection 200 6.7 Conclusion and recommendations for future work 204 References 205 7 Long-term condition monitoring usingwearable sensors andIoT-basedapplications 209 MirzaMansoorBaig, Hamid GholamHosseini, Jairo Gutierrez, Ehsan Ullah, Maria Linde´nand SandraOldfield 7.1 Introduction 209 7.2 Overview of wearable sensorand IoT systems forolder adults with long-term conditions 210 7.3 System overview and challenges 211 7.4 Evaluations and results 211 7.5 Discussion,challenges and conclusions 214 Acknowledgments 216 Conflict of interest statement 216 References 216 8 Magnetic nanoparticle hyperthermia for cancer treatment 221 Saeed Tiari, Kassianne Tofani, Julia Baumgarner andDavide Piovesan 8.1 Cancer treatment 221 8.2 Therapeutic hyperthermia 223 8.3 Magnetic nanoparticle hyperthermia 223 8.4 Types of particlesand delivery methods 225 8.5 Bioheat transfer studies 228 8.6 Case study: effect of cooling during hyperthermia 230 8.7 Conclusion 234 References 234 9 Hyperpolarized 3He MRIin lung 239 Shuhao Pan 9.1 Introduction 239 9.1.1 Epidemiologyof lung cancer 239 9.1.2 Pulmonary diagnosis 241 Contents ix 9.1.3 Hyperpolarized gas MRI 243 9.2 Hyperpolarized gas production and polarimetry 244 9.2.1 Background 244 9.2.2 Hyperpolarized gas bySEOP 245 9.2.3 SEOPinstrumentation 250 9.2.4 Storage, transfer of hyperpolarized gas 255 9.2.5 T Decay 256 1 9.2.6 In vivo administration of 3He 257 9.2.7 MRIhardware considerations forHP3He 257 9.3 Hyperpolarized 3He gas MRimaging 262 9.3.1 Ventilation imaging 262 9.3.2 Dynamic imaging 262 9.3.3 Measurement of regional oxygen uptake with T 263 1 9.3.4 Diffusion measurement 264 9.3.5 Measuringdiffusion: time-length scale dependence 264 9.3.6 Transverse relaxation time T * 267 2 9.4 Examples of current and future applicationsof HPgas MRI 267 9.4.1 Hyperpolarized 3He gas MRIstudies of pulmonary disease 267 9.4.2 Hyperpolarized gas MRIof radiation-induced lung injury 271 9.4.3 Radiomics 275 9.5 Conclusion 280 References 281 10 Acoustic imaging andtreatments methodsin biomedical 295 Fadıma Gu¨lsever Aksoy, Volkan Akdog˘anand MuharremKaraaslan 10.1 Magnetic resonance imaging 295 10.1.1 MRIspectroscopy 298 10.1.2 Functional MRI 298 10.1.3 4D flowMRI 299 10.2 Ultrasound 299 10.2.1 Doppler ultrasonography 300 10.2.2 Therapeutic ultrasound 301 10.3 Acoustic imaging methods 304 10.3.1 Vibroacoustography 304 10.3.2 Ultrasound elastography 304 10.3.3 Harmonic motion imaging 306 10.3.4 Acoustic radiation force imaging 306 10.3.5 Acoustic emission 306 10.3.6 Photoacoustic imaging 307 10.4 Conclusion 307 References 308 Index 315

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.