ebook img

Electromagnetic Form Factors of Excited Nucleons via Parity-Expanded Variational Analysis PDF

0.36 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electromagnetic Form Factors of Excited Nucleons via Parity-Expanded Variational Analysis

Electromagnetic Form Factors of Excited Nucleons via Parity-Expanded Variational Analysis 7 1 Finn M. Stokes , Waseem Kamleh, Derek B. Leinweber and Benjamin J. Owen ∗ 0 CentrefortheSubatomicStructureofMatter, 2 DepartmentofPhysics, n UniversityofAdelaide,SA5005 a J E-mail: [email protected] 5 2 VariationalanalysistechniquesinlatticeQCDarepowerfultoolsthatgiveaccesstotheexcited ] t statespectrumofQCD.Atzeromomentum,thesetechniquesarewellestablishedandcancleanly a l isolateenergyeigenstatesofeitherpositiveornegativeparity.Inordertocomputetheformfactors - p of a single energy eigenstate, we must perform a variational analysis at non-zero momentum. e When we do this with baryons, we run into issues with parity mixing, as boosted baryons are h [ not eigenstates of parity. The parity-expanded variational analysis (PEVA) technique is a novel 1 methodforensuringthesuccessfulandconsistentisolationofboostedbaryoneigenstates. This v is achieved through a parity expansion of the operator basis used to construct the correlation 7 7 matrix.World-firstcalculationsofexcitedstatenucleonformfactorsusingthisnewtechniqueare 1 presented,showingtheimprovementoverconventionalmethods. 7 0 . 1 0 7 1 : v i X r a 34thannualInternationalSymposiumonLatticeFieldTheory 24–30July2016 UniversityofSouthampton,UK Speaker. ∗ (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ ElectromagneticFormFactorsofExcitedNucleons FinnM.Stokes 1. Introduction In order to evaluate the form factors and transition moments of baryon excitations in lattice QCD,itisnecessarytoisolatethesestatesatfinitemomentum. Excitedbaryonshavebeenisolated onthelatticethroughacombinationofparityprojectionandvariationalanalysistechniques[1,2, 3, 4, 5, 6, 7, 8, 9]. At zero momentum, these techniques are well established and can isolate the states of interest. However, at non-zero momentum, these techniques are vulnerable to opposite paritycontaminations. To resolve this issue, we developed the Parity-Expanded Variational Analysis (PEVA) tech- nique [10]. By introducing a novel Dirac projector and expanding the operator basis used to con- struct the correlation matrix, we are able to cleanly isolate states of both parities at finite momen- tum. UtilisingthePEVAtechnique,weareabletopresentheretheworld’sfirstlatticeQCDcalcu- lationsofnucleonexcitedstateformfactorsfreefromoppositeparitycontaminations. Specifically, the Sachs electromagnetic form factors of a localised negative parity nucleon excitation are ex- amined. Furthermore, we clearly demonstrate the efficacy of variational analysis techniques at providing access to ground state form factors with extremely good control over excited state ef- fects. 2. ConventionalVariationalAnalysis Webeginbybrieflyhighlightingwhereoppositeparitycontaminationsenterintoconventional variationalanalysistechniquesandmotivatethePEVAtechnique. Intheseproceedingsweusethe PaulirepresentationforDiracmatrices. Inordertodiscussoppositeparitycontaminations,weneed tobeabletocategorisestatesbytheirparity. However,eigenstatesofnon-zeromomentumarenot eigenstatesofparity,sowemustcategoriseboostedstatesbytheirrest-frameparity. Toperformaconventionalvariationalanalysisonspin-1/2baryons, wetakeabasisofncon- ventionalbaryonoperatorsχi,whichcoupletostatesofbothparities, (cid:114) (cid:114) m m (cid:104)Ω|χi|B+(cid:105)=λBi+ EBB++ uB+(p,s), (cid:104)Ω|χi|B−(cid:105)=λBi− EBB− γ5uB−(p,s), − andusethisbasistoformann nmatrixoftwo-pointcorrelationfunctions × Gij(p;t):=∑eipx Ω χi(x)χj(0) Ω . · (cid:104) | | (cid:105) x This correlation matrix contains states of both parities, so we introduce the ‘parity projector’ Γ =(γ I)/2,andtakethespinortrace,definingtheprojectedcorrelationmatrixGij(Γ ;p,t):= 4 tr±(cid:0)Γ Gij±(p,t)(cid:1). By inserting a complete set of states between the two operators, and ±noting the ± useofEuclideantime,wecanrewritethisprojectedcorrelationmatrixas E (p) m E (p) m Gij(Γ±;p,t)=∑B+e−EB+(p)tλBi+λBj+ B+2EB+±(p)B+ +∑B−e−EB−(p)tλBi−λBj− B−2EB−∓(p)B− , Atzeromomentum,E (0)=m andtheprojectedcorrelationmatriceswilleachcontainterms B B ofasingleparity. However,atnon-zeromomentumE (p)=m andtheprojectedcorrelationma- B B (cid:54) trices contain O((E m)/2E) opposite parity contaminations. These opposite parity contamina- − tionswereinvestigatedinRef.[11]. 1 ElectromagneticFormFactorsofExcitedNucleons FinnM.Stokes 3. Parity-ExpandedVariationalAnalysis To solve the problem of opposite parity contaminations at finite momentum, we developed thePEVAtechnique[10]. Inthissection,wesummarisethePEVAtechnique,anddescribehowit appliestoformfactorcalculations. ThePEVAtechniqueworksbyexpandingtheoperatorbasisofthecorrelationmatrixtoisolate energyeigenstatesofbothrest-frameparitiessimultaneouslywhilestillretainingasignatureofthis parity. By considering the Dirac structure of the unprojected correlation matrix, we construct the novel momentum-dependent projector Γ := 1(I+γ )(I iγ γ pˆ ). This allows us to construct p 4(cid:110) 4 − 5 k k (cid:111) a set of “parity-signature” projected operators χpi =Γpχi, χpi(cid:48) =Γpγ5χi , where the primed in- dicesdenotetheinclusionofγ ,invertingthewaytheoperatorstransformunderparity. Unlikethe 5 conventional opertors χi, the inclusion of Γp ensures that the operators χpi and χpi(cid:48) have definite parityatzeromomentumwithoutrequiringprojectionbyΓ . ± By performing a variational analysis with this expanded basis [10], we construct optimised operatorsφα(x)thatcoupletoeachstateα. Wecanthenusetheseoperatorstocalculatethethree p pointcorrelationfunction G+µ(p(cid:48),p;t2,t1;α):= ∑ e−ip(cid:48)·x2ei(p(cid:48)−p)·x1(cid:104)φpα(cid:48)(x2)|Jµ(x1)|φαp(0)(cid:105), x2,x1 where Jµ is the O(a)-improved [12] conserved vector current used in [13], inserted with some momentum transfer q= p p. We can take the spinor trace of this with some projector Γ to get (cid:48) theprojectedthreepointco−rrelationfunctionGµ(p,p;t ,t ;Γ;α):= tr(cid:0)ΓGµ(p,p;t ,t ;α)(cid:1). + (cid:48) 2 1 + (cid:48) 2 1 There is an arbitrary sign choice in the definition of Γ , so it is convenient to define Γ := p p(cid:48) 1(I+γ )(I+iγ γ pˆ )=Γ , which is equally valid. We can then use this alternate projector in 4 4 5 k k p − constructing an alternate sinkoperator φ α(x), while leaving the sourceoperator unchanged. This p(cid:48) gives us an alternate three point correlation function, Gµ(p,p;t ,t ;α), leading to an alternate (cid:48) 2 1 projectedthreepointcorrelationfunction,Gµ(p,p;t ,t ;−Γ;α). (cid:48) 2 1 − Wecanthenconstructthereducedratio, (cid:118) R±(p(cid:48),p;α;r,s):=(cid:117)(cid:117)(cid:116)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)rµG±µ(p(cid:48),p;t2,t1G;(spν(cid:48)Γ;νt2;;αα))rGρ(Gpρ±;t(2p;,αp)(cid:48);t2,t1;sσΓσ;α)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) (cid:115) (cid:115) sign(cid:0)r Gγ (p,p;t ,t ;s Γ ;α)(cid:1) 2Eα(p) 2Eα(p(cid:48)) , × γ ± (cid:48) 2 1 δ δ Eα(p)+mα Eα(p(cid:48))+mα wherer ands arecoefficientsselectedtodeterminetheformfactors. Byinvestigatingther and µ µ µ s dependenceofR ,wefindthattheclearestsignalsaregivenby µ ± RT = 2 R (cid:0)p,p;α;(1,0),(1,0)(cid:1), and ± 1 pˆ pˆ(cid:48) ± (cid:48) ± · RS = 2 R (cid:0)p,p;α;(0,rˆ),(0,sˆ)(cid:1), ∓ 1 pˆ pˆ(cid:48) ∓ (cid:48) ± · wheresˆ ischosensuchthatp sˆ=0=p sˆ,rˆ isequaltoqˆ sˆ,andthesign ischosensuchthat (cid:48) · · × ± 1 pˆ pˆ ismaximised. (cid:48) ± · 2 ElectromagneticFormFactorsofExcitedNucleons FinnM.Stokes WecanthenfindtheSachselectricandmagneticformfactors GE(Q2)=(cid:2)Q2(cid:0)Eα(p(cid:48))+Eα(p)(cid:1)(cid:0)(Eα(p)+mα)(cid:0)Eα(p(cid:48))+mα(cid:1) (cid:12)(cid:12)p(cid:12)(cid:12)(cid:12)(cid:12)p(cid:48)(cid:12)(cid:12)(cid:1)RT 2(cid:12)(cid:12)q(cid:12)(cid:12)(cid:0)1 pˆ pˆ(cid:48)(cid:1)(cid:12)(cid:12)p(cid:12)(cid:12)(cid:12)(cid:12)p(cid:48)(cid:12)(cid:12)(cid:0)(Eα(p)+mα)(cid:0)Eα(p(cid:48))+∓mα(cid:1) (cid:12)(cid:12)p(cid:12)(cid:12)(cid:12)(cid:12)p±(cid:48)(cid:12)(cid:12)(cid:1)RS(cid:3) /(cid:104)4±mα(cid:104)(cid:0)Eα∓(p)E·α(p(cid:48))+m2α∓(cid:12)(cid:12)p(cid:12)(cid:12)(cid:12)(cid:12)p(cid:48)(cid:12)(cid:12)(cid:1)(cid:12)(cid:12)q(cid:12)(cid:12)2+4(cid:12)(cid:12)p(cid:12)(cid:12)2(cid:12)(cid:12)p(cid:48)(cid:12)(cid:12)2(cid:0)1±∓pˆ·pˆ(cid:48)(cid:1)(cid:105)(cid:105),∓and GM(Q2)=(cid:2) 2(cid:0)1 pˆ pˆ(cid:48)(cid:1)(cid:12)(cid:12)p(cid:12)(cid:12)(cid:12)(cid:12)p(cid:48)(cid:12)(cid:12)(cid:0)(Eα(p)+mα)(cid:0)Eα(p(cid:48))+mα(cid:1) (cid:12)(cid:12)p(cid:12)(cid:12)(cid:12)(cid:12)p(cid:48)(cid:12)(cid:12)(cid:1)RT ± (cid:12)(cid:12)q(cid:12)(cid:12)∓(cid:0)Eα·(p(cid:48))+Eα(p)(cid:1)(cid:0)(Eα(p)+mα)(cid:0)Eα(p(cid:48))+m±α(cid:1) (cid:12)(cid:12)p(cid:12)(cid:12)(cid:12)(cid:12)p(cid:48)(cid:12)(cid:12)±(cid:1)RS(cid:3) /(cid:104)2−(cid:104)(cid:0)Eα(p)Eα(p(cid:48))+m2α∓(cid:12)(cid:12)p(cid:12)(cid:12)(cid:12)(cid:12)p(cid:48)(cid:12)(cid:12)(cid:1)(cid:12)(cid:12)q(cid:12)(cid:12)2+4(cid:12)(cid:12)p(cid:12)(cid:12)2(cid:12)(cid:12)p(cid:48)(cid:12)(cid:12)2(cid:0)1∓∓pˆ·pˆ(cid:48)(cid:1)(cid:105)(cid:105). ∓ ThedetailsofthisprocedurewillbepresentedinfullinRef.[14]. 4. Results Inthissection,wepresentworld-firstlatticeQCDcalculationsoftheSachselectricandmag- neticformfactorsofthegroundstatenucleonandfirstnegative-parityexcitationwithgoodcontrol over opposite parity contaminations. We compare the results obtained by the PEVA technique to ananalysisusingconventionalparityprojection. These results are calculated on the second heaviest PACS-CS (2+1)-flavour full-QCD en- semble [15], made available through the ILDG [16]. This ensemble uses a 323 64 lattice, and × employs an Iwasaki gauge action with β = 1.90 and non-perturbatively O(a)-improved Wilson quarks. We use the m =570MeV PACS-CS ensemble, and set the scale using the Sommer pa- π rameterwithr =0.49fm,givingalatticespacingofa=0.1009(23)fm. Withthisscale,ourpion 0 massis515(8)MeV. Weused343gaugefieldconfigurations,withasinglesourcelocationoneach configuration. χ2/dofiscalcularedwiththefullcovariancematrix,andallfitshaveχ2/dof <1.2. For the analyses in this section, we start with a basis of eight operators, by taking two con- ventional spin-1/2 nucleon operators (χ1 =εabc[ua(cid:62)(Cγ5)db]uc, and χ2 =εabc[ua(cid:62)(C)db]γ5uc), andapplying16,35,100,and200sweepsofgaugeinvariantGaussiansmearingwhencreatingthe propagators[2]. Fortheconventionalvariationalanalysis,wetakethisbasisofeightoperatorsand project with Γ , and for the PEVA analysis, we parity expand the basis to sixteen operators and ± projectwithΓ andΓ . p p(cid:48) Toextracttheformfactors,wefixthesourceattimeslice16,andthecurrentinsertionattime slice21. Wechoosetimeslice21byinspectingthetwopointcorrelationfunctionsassociatedwith eachstateandobservingthatexcitedstatecontaminationsarestronglysuppressedbytimeslice21. We then extract the form factors from the ratios given in Sec. 3 for every possible sink time and lookforaplateauconsistentwithasingle-stateansatz. Beginningwiththegroundstate,inFig.1weplotG (Q2)andinFig.2weplotG (Q2)with E M respect to sink time, at Q2 =0.144GeV2. There are only slight differences between the results extractedbyPEVAandtheresultsextractedbyaconventionalvariationalanalysisinthiscase. We believethisisbecausetheoppositeparitycontaminationsaresmall,andcomefromheavierstates thataresuppressedbyEuclideantimeevolution. ForboththePEVAandconventionalvariationalanalysis,weseeveryclearandcleanplateaus in the form factors, indicating very good control over excited state contaminations. This supports 3 ElectromagneticFormFactorsofExcitedNucleons FinnM.Stokes 1.0 0.8 0.6 0.4 E 0.2 G 0.0 0.2 − PEVA (up) Conv. (up) 0.4 PEVA (d ) Conv. (d ) − p p 16 18 20 22 24 26 28 30 t/a Figure 1: G (Q2) for the ground state nucleon at Q2 =0.144GeV2. We plot the conventional analysis E withopenmarkersandthenewPEVAanalysiswithclosedmarkers. Ourfitstotheplateausareillustrated by shaded bands, with the central value indicated by dashed lines for the conventional analysis, and solid lines for the PEVA analysis. We plot the contributions from the singly represented quark sector with blue triangles,anddoublyrepresentedquarksectorwithorangesquares,forsinglequarksofunitcharge. 1.5 1.0 0.5 M 0.0 G 0.5 − PEVA (u ) Conv. (u ) 1.0 p p − PEVA (d ) Conv. (d ) p p 1.5 − 16 18 20 22 24 26 28 30 t/a Figure2:G (Q2)forthegroundstatenucleonatQ2=0.144GeV2. Weplottheconventionalanalysiswith M openmarkersanddashedlinesandthePEVAanalysiswithclosedmarkersandsolidlines.Thecontributions from the singly represented quark sector are plotted with red hexagons, and from the doubly represented quarksectorwithgreenpentagons,forsinglequarksofunitcharge. previous work demonstrating the utility of variational analysis in calculating baryon matrix ele- ments[17,18]. ByusingsuchtechniquesweareabletocleanlyisolateprecisevaluesfortheSachs electricandmagneticformfactorsofthegroundstatenucleon. Movingontothefirstnegativeparityexcitedstate,inFig.3weplotG (Q2)atQ2=0.146GeV2 E vs the sink time. We see that the PEVA analysis (closed points) allows us to fit a plateau (shaded bands with solid lines) at a much earlier time, and with a significantly different value to the con- ventional analysis (open points, dashed lines). This demonstrates the effectiveness of the PEVA techniqueatremovingoppositeparitycontaminations. Thelocalisednatureofthisstateismanifest 4 ElectromagneticFormFactorsofExcitedNucleons FinnM.Stokes 1.0 0.8 0.6 0.4 E 0.2 G 0.0 0.2 − PEVA (up) Conv. (up) 0.4 PEVA (d ) Conv. (d ) − p p 16 18 20 22 24 26 28 t/a Figure3: G (Q2)forthefirstnegativeparityexcitationofthenucleonatQ2=0.146GeV2. Weplotthethe E conventionalanalysiswithopenmarkersanddashedlines,andthenewPEVAanalysiswithclosedmarkers andsolidlines. Weplotthecontributionsfromthesinglyrepresentedquarksectorwithbluetriangles,and doublyrepresentedquarksectorwithorangesquares,forsinglequarksofunitcharge. ThePEVAanalysis plateausatamuchearliertimewithasignificantlydifferentvalue,demonstratingitseffectiveness. 1.5 1.0 0.5 0.0 M G 0.5 − 1.0 − PEVA (u ) Conv. (u ) p p 1.5 − PEVA (dp) Conv. (dp) 2.0 − 16 18 20 22 24 26 t/a Figure4:G (Q2)forthegroundstatenucleonatQ2=0.146GeV2. Weplottheconventionalanalysiswith M openmarkersanddashedlinesandthePEVAanalysiswithclosedmarkersandsolidlines.Thecontributions from the singly represented quark sector are plotted with red hexagons, and from the doubly represented quark sector with green pentagons, for single quarks of unit charge. The significantly different values of G (Q2)forthesinglyrepresentedquarksectordemonstratetheimportanceofthePEVAtechnique. M inthelargevaluesforG (Q2),similartothatfortheproton. Wealsoseesimilarimprovementsin E G (Q2),aspresentedinFig.4. M 5. Conclusion We have demonstrated the effectiveness of the PEVA technique specifically and variational analysis techniques in general at controlling excited state effects. For the ground state nucleon, conventional variational analysis techniques are sufficient to provide clean plateaus that allow for 5 ElectromagneticFormFactorsofExcitedNucleons FinnM.Stokes theeffectiveextractionofformfactors. However,forexcitedstates,oppositeparitycontaminations haveaclearandsignificanteffect. ThePEVAtechniqueallowsustoremovethesecontaminations andcalculatetheformfactorsofexcitednucleonsforthefirsttime. References [1] A.L.Kiratidis,W.Kamleh,D.B.LeinweberandB.J.Owen,Latticebaryonspectroscopywith multi-particleinterpolators,Phys.Rev.D91(2015)094509,[1501.07667]. [2] M.S.Mahbub,W.Kamleh,D.B.Leinweber,P.J.MoranandA.G.Williams,StructureandFlowof theNucleonEigenstatesinLatticeQCD,Phys.Rev.D87(2013)094506,[1302.2987]. [3] M.S.Mahbub,W.Kamleh,D.B.Leinweber,P.J.MoranandA.G.Williams,Low-lyingOdd-parity StatesoftheNucleoninLatticeQCD,Phys.Rev.D87(2013)011501,[1209.0240]. [4] CSSMLATTICEcollaboration,M.S.Mahbub,W.Kamleh,D.B.Leinweber,P.J.MoranandA.G. Williams,RoperResonancein2+1FlavorQCD,Phys.Lett.B707(2012)389–393,[1011.5724]. [5] HADRONSPECTRUMcollaboration,R.G.Edwardsetal.,Flavorstructureoftheexcitedbaryon spectrafromlatticeQCD,Phys.Rev.D87(2013)054506,[1212.5236]. [6] R.G.Edwards,J.J.Dudek,D.G.RichardsandS.J.Wallace,Excitedstatebaryonspectroscopyfrom latticeQCD,Phys.Rev.D84(2011)074508,[1104.5152]. [7] C.B.Lang,L.Leskovec,M.PadmanathandS.Prelovsek,Pion-nucleonscatteringintheRoper channelfromlatticeQCD,1610.01422. [8] C.LangandV.Verduci,ScatteringintheπN negativeparitychannelinlatticeQCD,Phys.Rev.D87 (2013)054502,[1212.5055]. [9] C.Alexandrou,T.Leontiou,C.N.PapanicolasandE.Stiliaris,Novelanalysismethodforexcited statesinlatticeQCD:Thenucleoncase,Phys.Rev.D91(2015)014506,[1411.6765]. [10] F.M.Stokesetal.,Parity-expandedvariationalanalysisfornonzeromomentum,Phys.Rev.D92 (2015)114506,[1302.4152]. [11] F.X.LeeandD.B.Leinweber,Negativeparitybaryonspectroscopy,Nucl.Phys.Proc.Suppl.73 (1999)258–260,[hep-lat/9809095]. [12] G.Martinelli,C.T.SachrajdaandA.Vladikas,AStudyof’improvement’inlatticeQCD,Nucl.Phys. B358(1991)212–227. [13] S.Boinepallietal.,Precisionelectromagneticstructureofoctetbaryonsinthechiralregime,Phys. Rev.D74(2006)093005,[hep-lat/0604022]. [14] F.M.Stokes,W.Kamleh,D.B.LeinweberandB.J.Owen,inpreparation. [15] PACS-CScollaboration,S.Aokietal.,2+1FlavorLatticeQCDtowardthePhysicalPoint,Phys. Rev.D79(2009)034503,[0807.1661]. [16] M.G.Beckett,B.Joo,C.M.Maynard,D.Pleiter,O.TatebeandT.Yoshie,BuildingtheInternational LatticeDataGrid,Comput.Phys.Commun.182(2011)1208–1214,[0910.1692]. [17] J.Dragosetal.,NucleonmatrixelementsusingthevariationalmethodinlatticeQCD,Phys.Rev.D94 (2016)074505,[1606.03195]. [18] B.J.Owen,J.Dragos,W.Kamleh,D.B.Leinweber,M.S.Mahbub,B.J.Menadueetal.,Variational ApproachtotheCalculationofgA,Phys.Lett.B723(2013)217–223,[1212.4668]. 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.