Boris Z.Katsenelenbaum Electromagnetic Fields – Restrictions and Approximation Electromagnetic Fields – Restrictions and Approximation.(cid:13) Boris Z. Katsenelenbaum Copyright © 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN:978-3-527-40388-2 Boris Z.Katsenelenbaum Electromagnetic Fields – Restrictions and Approximation WILEY-VCH GmbH & Co.KGaA Author: Prof.Dr.Boris Z.Katsenelenbaum Ha’alya str.20,Apr.8,22383 Nahariya,Israel This book was carefully produced.Nevertheless,author and publisher do not warrant the information contained therein to be free of errors.Readers are advised to keep in mind that statements,data, illustrations,procedural details or other items may inadvertently be inaccurate. Coverfigure: Zero lines of the auxiliary field for rectangular object reconstruction Library of Congress Card No.applied for British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>. © 2003 WILEY-VCH Verlag GmbH & Co.KGaA,Weinheim All rights reserved (including those of translation into other languages).No part of this book may be reproduced in any form – by photoprinting,microfilm,or any other means – nor transmitted or translated into a machine language without written permission from the publishers.Registered names,trademarks,etc. used in this book,even when not specifically marked as such are not to be considered unprotected by law. Printed in the Federal Republic of Germany Printed on acid-free paper. Printing: betz-druck GmbH,Darmstadt Bookbinding: Großbuchbinderei J.Schäffer GmbH & Co.KG,Grünstadt ISBN3-527-40388-4 Preface Thesubjectofthisbookfallswithinthescopeofthreedisciplines–theantennastheory,high- frequency electrodynamics and mathematical physics. There are problems in which these disciplinesarefundamentallyconnected.Theyaretheinverseproblemsofthehigh-frequency field theory,moreprecisely–the connectionbetweentheshapeofthe domainin whichthe monochromaticcurrentsarelocated,andthepossibilityofapproximatinganygivenfieldby the fields of these currents. This connection gives rise to a number of profoundquestions. Manyofthemareformulated,andsomeareevensolvedinthisbook. Thefollowingproblemsareconsidered: 1. Antennasynthesis. Surfaces exist, which have the defect that the fields generatedby the current located on these surfaces cannot even approximate many given fields (or their patterns). Therearealotofthesesurfaces. Asarule,theantennasurfaceshouldnotbeclose tothem. 2.Optimalcurrentsynthesis.Thecaseisconsideredwhenthefieldsgeneratedbycurrents, located on the given surface, do not approximate a given field, or else this approximation requiresaverylargecurrent. Oneshouldthenfindthefieldwhichis(ifpossible)closetoa givenone,andsocanberealizedbythecurrentofthesmallestpossiblenorm. 3. Solvability of the first-kind integral equations. The existence of solutions to inverse electrodynamicproblemsdependsontheintegrationdomain.Thisdependenceisinvestigated withdifferentdefinitionsoftheterm“solution”. 4. Noncompleteness of the set of functions generated by the operator acting over the completesetoffunctions. Iftheoperatorwhichtransformsthecurrentintothefield,actson thecurrentlocatedontheabove-mentioneddefectsurfaces(throughoutthebookwewillrefer to such surfaces or lines as specific ones), then the kernel of the conjugate operator is not empty. This means that the generatedfield is orthogonal(in some metrics) to the so-called orthogonalcomplementfunctions.Thesetofsuchfunctionsmaybehighlyrichandtheactual degreeofthesurfacedefectivenessessentiallydependsonitsrichness. 5. ConstructionofarealsolutiontotheHelmholtzequation(ortheMaxwellequations) byitszeroline(zerosurface).Thedefectlines(surfaces)arezerolines(surfaces)ofsomereal solutionstotheseequations;theasymptoticsofthesolutionsatinfinitycontainsthefunction oftheorthogonalcomplement. Theinvestigationofsuchsolutionsisanefficientmethodof studyingadefectline. 6.Investigationofpseudo-solutionstothefirst-kindequationsoriginatingfromtheinverse problemsfor the fields obtainedby the two-dimensionalFouriertransformationin arbitrary domains. Theemphasesinthebookareapproximatelyintheaboveorder. Themathematicaltech- 6 Preface niqueisnotmoredifficultthanthatusedindiffractiontheoryproblems. Themajorityofthe intermediatederivationsarereplacedbytheirdescription.Themethodsoffunctionalanalysis andtheanalyticaltheoryofthesolutiontotheHelmholtzequationareusedverylittle. The first edition of the book entitled “The approximability problem of electromagnetic field”waspublishedinRussian(Nauka,Moscow1996)[1]. TheEnglisheditionisextended withnewresults(partlyunpublished),inparticular,withthenewchapter“Longnarrowbeam ofelectromagneticwaves”. Theappendix“Antennasynthesisbyamplituderadiationpattern andmodifiedphaseproblem”,writtenbyN.N.Voitovich,isalsoincluded. TheauthorisdeeplygratefultoN.N.Voitovichforhiscarefultranslationofthemanuscript intoEnglishandforhiscontributioninthescientificediting.SpecialthanksareduetoUlrike WernerandMelanieRohnforeditingthebookthorouglyandthepermanentattentiontothe project.TheauthoralsothanksOlegKusyiforhistechnicalassistance. B.Z.Katsenelenbaum Israel,July5,2003 Contents 1 Introduction 9 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 SubjectandMethodofInvestigation . . . . . . . . . . . . . . . . . . . . . . 12 1.3 Realizability,Approximability,AmplitudeApproximability . . . . . . . . . . 15 1.4 OutlineoftheBook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2 NonapproximabilityofPatterns 25 2.1 NonapproximabilityandZeroLinesoftheRealWaveField . . . . . . . . . . 25 2.2 ExamplesofSpecificLines.“Prohibited”AntennaShapes . . . . . . . . . . 33 2.3 AmplitudeNonapproximability. . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4 ProbabilisticDescriptionofBodyShapebytheLikenessPrinciple . . . . . . 54 2.5 BodyShapeReconstructionbyitsScatteredPatterns . . . . . . . . . . . . . 63 2.6 PropertiesofSpecificLines . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3 NonapproximabilityofNearFields 75 3.1 ApproximabilityConditionforNearFields . . . . . . . . . . . . . . . . . . 75 3.2 ConstructionofaFieldbyitsZeroLine.CaseoftheCircleArc. . . . . . . . 81 3.3 AnalyticalExtensionoftheEigenoscillationFieldoutsidetheBoundaryofthe Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4 TheNormoftheCurrent 99 4.1 TheMinimalCurrentNormataGivenAccuracyofApproximation . . . . . 99 4.2 GeneralizedFunctionsofDoubleOrthogonality.NonapproximabilityandEx- istenceofNonradiatingCurrents . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3 OptimalCurrentSynthesis.TheGeneralCase . . . . . . . . . . . . . . . . . 119 4.4 DomainofSpecificLineInfluence . . . . . . . . . . . . . . . . . . . . . . . 131 5 ElectromagneticField.TheMaxwellEquations 141 5.1 TrivialGeneralizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.2 PropertiesofSpecificSurfaces . . . . . . . . . . . . . . . . . . . . . . . . . 153 6 LongNarrowBeamofElectromagneticWaves 159 6.1 Two-dimensionalFourierTransformation . . . . . . . . . . . . . . . . . . . 159 6.2 TransmissionofFieldbyWaveBeam:PossibilitiesandRestrictions . . . . . 165 6.3 ShapeofAntennaandRectenna . . . . . . . . . . . . . . . . . . . . . . . . 182 8 Contents BibliographyforChapters1–6 191 Appendix:AntennaSynthesisbyAmplitudeRadiationPatternandModifiedPhase Problem(byN.N.Voitovich) 195 A.1 SynthesisofAntennasbyAmplitudeRadiationPattern . . . . . . . . . . . . 195 A.1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 A.1.2 Problemformulationforthecurvilinearantenna. . . . . . . . . . . . 196 A.1.3 ReducingtotheLagrange–Eulerequation . . . . . . . . . . . . . . . 197 A.1.4 Caseoflinearantenna.Mainpropertiesofsolutions . . . . . . . . . 199 A.2 ModifiedPhaseProblem.ContinuousCase . . . . . . . . . . . . . . . . . . 201 A.2.1 Modifiedphaseproblemandrelatedmathematicalandphysicalprob- lems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 A.2.2 Analytical solutions to the Lagrange–Euler equation for linear an- tenna.Theoreticalresults . . . . . . . . . . . . . . . . . . . . . . . . 201 A.2.3 Solutionbranching . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 A.2.4 Numericalexample.Problemwithsymmetricaldata . . . . . . . . . 214 A.2.5 Problemswithnonsymmetricaldata . . . . . . . . . . . . . . . . . . 221 A.3 ModifiedPhaseProblem.DiscreteCase . . . . . . . . . . . . . . . . . . . . 224 A.3.1 Problemformulationforlinearantennaarray. Lagrange–Eulerequa- tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 A.3.2 Theoreticalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 A.3.3 Numericalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 BibliographyforAppendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 Index 235 1 Introduction 1.1 Introduction 1.Inthefollowingexampleswebrieflyillustratetheproblemsconsideredinthebookandthe resultsobtained. A.Acylindricalmirrorisgiven;itsdirectorisanarcofacircle.Themirrorisilluminated by a field with the polarization parallel to the cylinder’s axis. The induced current has the same direction. Forsimplicity,weassume thatboththefieldandthecurrentdonotdepend onthecoordinateinthis direction. Canthis currentgenerate(atasuitableillumination)the pattern ,orapatternclosetoit? The(cid:0)an(cid:1)sw(cid:2)(cid:3)e(cid:4)r(cid:0)tothisquestiondependsonthevalueofthecircleradius . Itisimpossibleto generatethispatternoreventheoneclosetoitif ,where i(cid:1)stheBesselfunction and isthewavenumber( isthefreque(cid:2)n(cid:0)c(cid:5)y(cid:3))(cid:1).(cid:6)Th(cid:7)e(cid:8)closestpa(cid:2)t(cid:0)terntothegivenoneis (cid:3).T(cid:7)h(cid:4)is(cid:5)r(cid:6)esultdoesnotdependo(cid:4)nthemirrorwidth. (cid:2)(cid:3)(cid:4)(cid:0)Thepatterncanbearthestampoftheregioninwhichthecurrentislocated. Thisstamp cannotbeerasedbychangingthecurrentdistribution.Ifthecondition holds,then itisimpossibleforthepatterngeneratedbythecurrent,locatedonsuc(cid:2)h(cid:0)a(cid:5)(cid:3)m(cid:1)i(cid:6)rr(cid:7)or(cid:8),tobeequal (evenapproximately)toapattern,theFourierseriesofwhichcontainstheconstantterm. If isnotequaltoazeroofthefunction ,thenitispossibletoapproximatesuchapatternor (cid:3)ev(cid:1)enrealizeit,butif isclosetothis(cid:2)z(cid:0)ero,thenthecurrentgeneratingthepatternmustbe verylarge. (cid:3)(cid:1) B.Ametalscreenisapartofasphere.Itisilluminatedbyanelectromagneticimpulse.Is itpossibletoverifywhetherthescreenisreallyapartofasphere,andtofinditsradiusbythe measuredpatternofthescatteredfield? Boththespatialandtimestructuresoftheimpulseas wellastheshapeofthemirrorcontourareunknown. Theanswerispositive. Todoit,thevectorpatterngenerated(atanyillumination)bythe currentonthescreenshouldbemultipliedbyacertainweightvectorfunction,andtheproduct shouldbeintegratedoverthesolidangle andFourier-transformedovertime. Ifthescreen isapartofasphere,thenatsomefrequen(cid:9)ci(cid:7)estheFouriertransformwillbeequaltozero.The sphereradiuscanbecalculatedbyvaluesofthesefrequencies. Theaboveexamplesconcerningthepartsofcylindricalorsphericalsurfacesarenotexotic. There are many such surfaces, moreover, in their neighborhood infinite numbers of other surfacesofthiskindexist.Thisfactmakesthestudyoftheproblemreasonable. Theshapeofthesurface,wherethecurrentsarelocated,canbedecisivefortheapprox- imationnotonlyofanypatternbythepatternsofthesecurrents,butitisalsorelevanttothe fieldsinthenearzone. Electromagnetic Fields – Restrictions and Approximation.(cid:13) Boris Z. Katsenelenbaum Copyright © 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN:978-3-527-40388-2 10 1 Introduction C.Aplaneisilluminatedbyabeamincomingfromtheantennalocatedinanotherplane paralleltothegivenone. Cansomegivenfieldbecreatedonit? Theanswerispositiveonly ifthefieldfulfilstheconditionthatsomeexpression,containingthisfield, equalszero. The problem is a two-dimensional generalization of the problem on the existence condition for the field, located on the finite straight-line segment, which creates a given pattern. In both casestheproblemisreducedtoafirst-kindintegralequation.Theaboveconditionmeansthat the pseudo-solutionto this equationsolves it, that is, the solution exists. In the case of the one-dimensionalproblemon the patternof a linear current, the aboveconditionmeans that thegivenpatternbelongstotheclassoffunctionsdefinedbythePaley–Wienertheorem. 2.Usingsimplereasoning,onecaneasilyexplaintheimpossibilityofapproximatingsome classofpatternsfromthefirstexample. Letusgivesuchanexplanation,emphasizingthatit isnotuniversal–ingeneral,thephysicalexplanationismorecomplicated. As in most of the book, we will consider here the two-dimensional scalar formulation, becauseitisshorterandmoredemonstrative. Inessence,thethree-dimensionalvectorprob- lemsarenotmorecomplicated,buttheyaremuchmorecumbersome.Theseproblemswillbe consideredinChapter5. First,weprovethatif ,thennocurrentonthewholecircle generatesa patternhavingaconstantte(cid:0)r(cid:0)m(cid:0)(cid:1)i(cid:2)n(cid:1)th(cid:2)eF(cid:3)ourierseries.Atthisfrequencytheree(cid:3)x(cid:2)ists(cid:2)thesolution tothehomogeneousHelmholtzequationfortheelectricfield,whichequalszeroonthecircle andhasnosingularityinsideit. Thissolutionis . Inotherwords,thecircle isaresonantone. (cid:4)(cid:0)(cid:3)(cid:5)(cid:6)(cid:1) (cid:2) (cid:0)(cid:0)(cid:0)(cid:1)(cid:3)(cid:1) Consideranauxiliaryinteriorproblemonthefield inahollowmetalcylinderof (cid:0) givenradius .Attheresonantfrequencytheeigeno(cid:4)s(cid:0)c(cid:3)i(cid:5)ll(cid:6)at(cid:1)ion canexist insuchavol(cid:3)um(cid:2)e.(cid:2)Thecurrentonthewallsisproportionalto (cid:4)(cid:0)(cid:3)a(cid:5)n(cid:6)d(cid:1)d(cid:2)oe(cid:0)s(cid:0)n(cid:0)o(cid:1)t(cid:3)d(cid:1)ependon (cid:0) theangle . Thiscurrentgeneratesafieldequaltozerooutsi(cid:7)de(cid:4)(cid:8)th(cid:7)e(cid:3)cylinder. Belowwewill (cid:0) useonlyth(cid:6)efactthatthecurrent,independentoftheangle ,isnotradiatingatthisfrequency. We returntotheproblemofthefieldgeneratedbyan(cid:6)arbitrarycurrentonthecirclearc. Startingwiththecaseofthewholecircle,expandthecurrentintheFourierseries.Everyterm oftheseriesisproportionalto or andgeneratesthefieldwiththe sameangulardependence.But(cid:4)t(cid:5)h(cid:6)e(cid:9)z(cid:6)ero-o(cid:6)r(cid:7)d(cid:8)e(cid:9)rt(cid:6)er(cid:0)m(cid:9)d(cid:2)oe(cid:3)s(cid:5)n(cid:9)o(cid:5)t(cid:10)(cid:10)g(cid:10)(cid:1)enerateafieldoutsidethecircle, thereforefor suchatermisabsentinthefieldexpansionofanycurrentaswellasinthe pattern. (cid:3) (cid:11)(cid:2) This result is also validforanyarcof the circle, in spite of the factthat the arc is not a closedline and, therefore,nonradiatingcurrentcannotbe inducedonit. Assume that some currentonthearcgeneratesapatternwithzero-ordertermintheFourierseries. Thenwecan supply the arc to the whole circle and set the current to be zero on the supplementaryarc. Inthiswaywehaveconstructedthecurrentonthewholecircle,generatingthepatternwith nonzeroconstantterm.But,asitfollowsfromtheabove,itisimpossible. The direct proofof the abovestatement is elementaryfor this example. If is a circle arcofradius and isacurrent,locatedon ,thenthepatterngeneratedby(cid:12) is(with accuracytoa(cid:2)nones(cid:13)s(cid:0)e(cid:14)n(cid:1)tialfactor) (cid:12) (cid:13)(cid:0)(cid:15)(cid:1) (cid:1)(cid:2)(cid:3)(cid:0)(cid:1)(cid:2)(cid:3)(cid:4)(cid:0)(cid:5)(cid:4) (1.1) (cid:16)(cid:0)(cid:6)(cid:1)(cid:2) (cid:17) (cid:13)(cid:0)(cid:14)(cid:1)(cid:18)(cid:14)(cid:10) (cid:1) (cid:0) 1.1 Introduction 11 TheconstanttermintheFourierseriesforthepatternis(withthesameaccuracy) (cid:0)(cid:0) (1.2) (cid:0)(cid:0)(cid:1)(cid:1)(cid:2)(cid:1)(cid:2)(cid:3)(cid:3)(cid:4)(cid:1)(cid:0)(cid:5)(cid:6)(cid:1) (cid:7)(cid:0)(cid:8)(cid:1)(cid:2)(cid:8)(cid:9) (cid:0) (cid:0) (cid:1) (cid:1) If ,thenthezerothtermintheseriesfor isabsent. Thispropertydoesnot dep(cid:4)e(cid:1)n(cid:0)(cid:5)d(cid:6)o(cid:1)n(cid:2)bo(cid:4)ththecurrentandthelengthofarc . If(cid:0)(cid:0)(cid:1)i(cid:1)sthewholecircle,thenthisproves oncemorethat,attheresonance,anycurrentont(cid:10)hewa(cid:10)llscreatesafieldwhichdoesnothave thezerothFourierterm. However,themultiplier is factoredoutforthecircle arcas well. (cid:4)(cid:1)(cid:0)(cid:5)(cid:6)(cid:1) 3. Letus state theprobleminmorespecific terms, but still withoutaspiringto anexact formulation.Considerthecurrent locatedonthegivenline ( isthecoordinateon ). Itgeneratesthepattern (cid:7)(cid:0)(cid:11)(cid:1) (cid:10) (cid:11) (cid:10) (1.3) (cid:0)(cid:0)(cid:1)(cid:1)(cid:2) (cid:0)(cid:0)(cid:11)(cid:12)(cid:1)(cid:1)(cid:7)(cid:0)(cid:11)(cid:1)(cid:2)(cid:11)(cid:9) (cid:0) (cid:1) Theformofasmoothkernel in(1.3)isnotimportanthere.(Inthethree-dimensionalvector case,theline shouldberep(cid:0)lacedbyasurface, –byafunctionalmatrix,andsoon.) Intheante(cid:10)nnasynthesistheory,equation(1.3)(cid:0)isconsideredastheintegralequationonthe current . Weareinterestedintheproblemontheexistenceofasolutiontothisequation ortoan(cid:7)e(cid:0)q(cid:11)u(cid:1)ationinwhich isreplacedbyanotherfunctioncloseto inthequadratic metric. Thecurrent s(cid:0)ho(cid:0)(cid:1)ul(cid:1)dhaveafinitenorm. Firstofall,wewil(cid:0)l(cid:0)i(cid:1)nv(cid:1)estigatehowthe existenceofasolutio(cid:7)n(cid:0)(cid:11)to(cid:1)thisequationdependsontheline . For the validity of most of the results obtained below(cid:10), it is not necessary for the norm of to be finite. Moreover, it is acceptable that the current may have singularities and (cid:7)(cid:0)(cid:11)(cid:0)(cid:1)maynotbeintegrable.Itisonlysignificantthatthecurrentshouldbeintegrableitself, (cid:1)so(cid:7)(cid:0)t(cid:11)h(cid:1)a(cid:1)t the integral on the right side of expression (2.6) exists (see below). This condition isfulfilledalsoforthecurrentattheborderofasemi-plane(forbothpolarizations),andfor , that is, for the approximation, usually used in the antenna array theory. (cid:7)H(cid:0)o(cid:11)w(cid:1)e(cid:2)verÆ,(cid:0)f(cid:11)or(cid:3)si(cid:11)m(cid:1)p(cid:1)licity(particularlyinChapter4),wewillrequire (cid:0) tobeintegrable. Thereexistsuchlines,forwhichequation(1.3)hasnosolution,a(cid:1)n(cid:7)d(cid:0)(cid:11)((cid:1)w(cid:1)hatisimportant)the equation,inwhich isreplacedbyafunctionclosetoit,hasnosolution,either.Toobtain thesolvableequatio(cid:0)n(cid:0),(cid:1)w(cid:1)eshouldchange byafinitevalue.Intermsoffunctionalanalysis thismeansthatthecompletesetofcurren(cid:0)ts(cid:0)(cid:1)(cid:1) generatesanoncompletesetofpatterns . Itturnsout,thatline possesses thisprop(cid:7)e(cid:0)r(cid:11)ty(cid:1),ifthereexistsasolutiontothehomoge(cid:0)n(cid:0)o(cid:1)u(cid:1)s Helmholtz equation, e(cid:10)qualto zero on . In the aboveexample“A” this solution is . The investigation of such a solution tu(cid:10)rns out to be a very efficient method for solv(cid:4)in(cid:1)g(cid:0)(cid:5)th(cid:13)(cid:1)e problemofapproximabilityandtherelatedones. Themost importantresult is that thereare “many”such lines and surfaces, and“many” patterns ,forwhichequation(1.3)hasnosolutionevenif isreplacedbyanyfunc- tion“clo(cid:0)se(cid:0)”(cid:1)t(cid:1)oit. Therefore,theeffectofnonapproximabilitya(cid:0)n(cid:0)d(cid:1)i(cid:1)tsconsequencesdeserves adetailedanalysis.Wewillexplainbelow,what“many”and“close”mean.
Description: