ebook img

Electrodeposition from Ionic Liquids PDF

398 Pages·8.484 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electrodeposition from Ionic Liquids

fm January11,2008 10:34 CharCount=0 ElectrodepositionfromIonicLiquids Editedby FrankEndres,DouglasMacFarlane, andAndrewAbbott i fm January11,2008 10:34 CharCount=0 RelatedTitles Wasserscheid,P.,Welton,T.(eds.) IonicLiquidsinSynthesis 2007 ISBN978-3-527-31239-9 Staikov,G.T.(ed.) Electrocrystallization inNanotechnology 2007 ISBN978-3-527-31515-4 Paunovic,M.,Schlesinger,M. Fundamentals ofElectrochemicalDeposition 2006 ISBN978-0-471-71221-3 Ohno,H. ElectrochemicalAspectsofIonicLiquids 2005 ISBN978-0-471-64851-2 ii fm January11,2008 10:34 CharCount=0 Electrodeposition from Ionic Liquids Edited by Frank Endres, Douglas MacFarlane, and Andrew Abbott WILEY-VCH Verlag GmbH & Co. KGaA iii fm January11,2008 10:34 CharCount=0 TheEditors (cid:1) AllbookspublishedbyWiley-VCHare carefullyproduced.Nevertheless,authors, Prof.Dr.FrankEndres editors,andpublisherdonotwarrantthe FacultyofNaturalandMaterialSciences informationcontainedinthesebooks, ClausthalUniversityofTechnology includingthisbook,tobefreeoferrors. 38678Clausthal-Zellerfeld Readersareadvisedtokeepinmindthat Germany statements,data,illustrations,procedural detailsorotheritemsmayinadvertentlybe Prof.DouglasMacFarlane inaccurate. SchoolofChemistry MonashUniversity LibraryofCongressCardNo.:appliedfor Clayton,Victoria3800 Australia BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary. Prof.Dr.AndrewAbbott Bibliographicinformationpublishedbythe ChemistryDepartment DeutscheNationalbibliothek UniversityofLeicester DieDeutscheNationalbibliothekliststhis LeicesterLE17RH publicationintheDeutscheNational- UnitedKingdom bibliografie;detailedbibliographicdataare availableintheInternetathttp://dnb.d-nb.de (cid:1)c 2008WILEY-VCHVerlagGmbH&Co. KGaA,Weinheim Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw. Composition Aptara,Inc.,NewDelhi,India Printing StraussGmbH,Mo¨rlenbach Bookbinding Litges&DopfGmbH, Heppenheim CoverDesign Kessler,Karlsruhe PrintedintheFederalRepublicofGermany Printedonacid-freepaper ISBN978-3-527-31565-9 iv fm January11,2008 10:34 CharCount=0 v Contents Preface IX Foreword XIII ListofContributors XV ListofAbbreviations XIX 1 WhyuseIonicLiquidsforElectrodeposition? 1 AndrewP.Abbott,IanDalrymple,FrankEndres,andDouglasR.MacFarlane 1.1 Non-aqueousSolutions 3 1.2 IonicFluids 3 1.3 WhatisanIonicLiquid? 4 1.4 TechnologicalPotentialofIonicLiquids 6 1.5 ConcludingRemarks 12 References 12 2 SynthesisofIonicLiquids 15 TomBeyersdorff,ThomasJ.S.Schubert,UrsWelz-Biermann,WillPitner, AndrewP.Abbott,KatyJ.McKenzie,andKarlS.Ryder 2.1 SynthesisofChloroaluminateIonicLiquids 15 2.2 Air-andWater-stableIonicLiquids 21 2.3 Eutectic-basedIonicLiquids 31 References 42 3 PhysicalPropertiesofIonicLiquidsforElectrochemicalApplications 47 HiroyukiOhno 3.1 Introduction 47 3.2 ThermalProperties 47 3.3 Viscosity 54 3.4 Density 55 3.5 RefractiveIndex 56 3.6 Polarity 58 3.7 SolubilityofMetalSalts 64 ElectrodepositionfromIonicLiquids.EditedbyF.Endres,D.MacFarlane,A.Abbott Copyright(cid:1)C 2008WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:978-3-527-31565-9 fm January11,2008 10:34 CharCount=0 vi Contents 3.8 ElectrochemicalProperties 66 3.9 ConclusionandFutureProspects 77 Acknowledgement 77 References 78 4 ElectrodepositionofMetals 83 ThomasSchubert,SherifZein,ElAbedin,AndrewP.Abbott, KatyJ.McKenzie,KarlS.Ryder,andFrankEndres 4.1 ElectrodepositioninAlCl -basedIonicLiquids 84 3 4.2 ElectrodepositionofMetalsinAir-andWater-stableIonicLiquids 92 4.3 DepositionofMetalsfromNon-chloroaluminateEutectic Mixtures 103 4.4 TroublesomeAspects 114 References 120 5 ElectrodepositionofAlloys 125 I.-WenSun,andPo-YuChen 5.1 Introduction 125 5.2 ElectrodepositionofAl-containingAlloysfromChloroaluminate IonicLiquids 126 5.3 ElectrodepositionofZn-containingAlloysfromChlorozincate IonicLiquids 132 5.4 FabricationofaPorousMetalSurfacebyElectrochemicalAlloying andDe-alloying 137 5.5 Nb–Sn 139 5.6 Air-andWater-stableIonicLiquids 140 5.7 Summary 145 References 145 6 ElectrodepositionofSemiconductorsinIonicLiquids 147 NataliaBorisenko,SherifZeinElAbedin,andFrankEndres 6.1 Introduction 147 6.2 GalliumArsenide 149 6.3 IndiumAntimonide 149 6.4 AluminumAntimonide 150 6.5 ZincTelluride 150 6.6 CadmiumTelluride 151 6.7 Germanium 151 6.8 Silicon 155 6.9 GreySelenium 160 6.10 Conclusions 164 References 164 7 ConductingPolymers 167 JenniferM.Pringle,MariaForsyth,andDouglasR.MacFarlane 7.1 Introduction 167 7.2 Electropolymerization–GeneralExperimentalTechniques 171 fm January11,2008 10:34 CharCount=0 Contents vii 7.3 SynthesisofConductingPolymers 177 7.4 Characterization 191 7.5 FutureDirections 203 7.6 Conclusions 207 References 208 8 NanostructuredMetalsandAlloysDepositedfromIonicLiquids 213 RolfHempelmann,andHaraldNatter 8.1 Introduction 213 8.2 PulsedElectrodepositionfromAqueousElectrolytes 215 8.3 SpecialFeaturesofIonicLiquidsasElectrolytes 220 8.4 NanocrystallineMetalsandAlloysfromChlorometallate-based IonicLiquids 222 8.5 NanocrystallineMetalsfromAir-andWater-stableIonicLiquids 227 8.6 ConclusionandOutlook 234 Acknowledgement 235 References 235 9 ElectrodepositionontheNanometerScale:InSituScanning TunnelingMicroscopy 239 FrankEndres,andSherifZeinElAbedin 9.1 Introduction 239 9.2 InsituSTMin[Py1,4]TFSA 241 9.3 ElectrodepositionofAluminum 245 9.4 ElectrodepositionofTantalum 250 9.5 ElectrodepositionofPoly(p-phenylene) 252 9.6 Summary 256 References 256 10 PlasmaElectrochemistrywithIonicLiquids 259 Ju¨rgenJanek,MarcusRohnke,ManuelPo¨lleth,andSebastianA.Meiss 10.1 Introduction 259 10.2 ConceptsandPrinciples 260 10.3 EarlyStudies 265 10.4 TheStabilityofIonicLiquidsinPlasmaExperiments 269 10.5 PlasmaElectrochemicalMetalDepositioninIonicLiquids 274 10.6 ConclusionsandOutlook 282 Acknowledgement 283 References 283 11 TechnicalAspects 287 DebbieS.Silvester,EmmaI.Rogers,RichardG.Compton,KatyJ.McKenzie, KarlS.Ryder,FrankEndres,DouglasMacFarlane,andAndrewP.Abbott 11.1 MetalDissolutionProcesses/CounterElectrodeReactions 287 11.2 ReferenceElectrodesforUseinRoom-temperatureIonicLiquids 296 11.3 ProcessScaleUp 310 fm January11,2008 10:34 CharCount=0 viii Contents 11.4 TowardsRegenerationandReuseofIonicLiquidsinElectroplating 319 11.5 Impurities 334 Appendix:ProtocolfortheDepositionofZincfromaTypeIII IonicLiquid 344 References 345 12 PlatingProtocols 353 FrankEndres,SherifZeinElAbedin,Q.Liu,DouglasR.MacFarlane, KarlS.Ryder,andAndrewP.Abbott 12.1 ElectrodepositionofAlfrom1-Ethyl-3-methylimidazolium chloride/AlCl 353 3 12.2 ElectrodepositionofAlfrom1-Butyl-3-methylimidazolium chloride–AlCl –Toluene 356 3 12.3 ElectrodepositionofAlfrom1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide/AlCl 358 3 12.4 ElectrodepositionofAlfrom1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide/AlCl 360 3 12.5 ElectrodepositionofLifrom1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide/Lithium bis(trifluoromethylsulfonyl)amide 362 12.6 ElectrodepositionofTafrom1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide 364 12.7 ElectrodepositionofZincCoatingsfromaCholineChloride: EthyleneGlycol-basedDeepEutecticSolvent 365 References 367 13 FutureDirectionsandChallenges 369 FrankEndres,AndrewP.Abbott,andDouglasMacFarlane 13.1 Impurities 369 13.2 CounterElectrodes/Compartments 370 13.3 IonicLiquidsforReactive(Nano-)materials 371 13.4 Nanomaterials/Nanoparticles 372 13.5 Cation/AnionEffects 373 13.6 PolymersforBatteriesandSolarCells 373 13.7 VariableTemperatureStudies 374 13.8 IntrinsicProcessSafety 374 13.9 Economics(Price,Recycling) 375 13.10 WhichLiquidtoStartWith? 375 13.11 FundamentalKnowledgeGaps 376 SubjectIndex 379 fm January11,2008 10:34 CharCount=0 ix Preface Aroundtenyearsagotherewereonlyabouttwentypapersperyeardealingwith “ionicliquids”or“room-temperaturemoltensalts”.Hencetheterm“ionicliquid” was unknown to most of the scientific community at that time. Furthermore, therewaspracticallynoknowledgeofitinindustry,andjustahandfulofgroups worldwide were investigating ionic liquids. Ionic liquids were perceived as an academic curiosity. When one of us (F.E.) started his independent research in 1996 with the subject “room-temperature molten salts” many people cautioned himabouttheeccentrictopic.Whatwasthereasonfortheseopinions?Fromthe 1950stoabout1995mostofthepeopleinthecommunityperformedstudieswith ionic liquids based on AlCl , often called “first generation” ionic liquids. These 3 arehygroscopicliquids,liberatingHClandavarietyofoxo-chloroaluminatesupon exposure to moisture. Reproducible operation in these liquids requires either a strictlycontrolledinertgasatmospherewithextremelylowwaterconcentrationor at least closed vessel conditions with limited contamination. Thus, these liquids wereconsideredtobedifficulttoworkwithandoflittlepracticalimportance.Onthe otherhandas“room-temperaturemoltensalts”theyhadattractiveelectrochemical windowsandallowedtheelectrodepositionofnoblemetalsandofaluminumand its alloys in micrometer thick layers. Aluminum is quite an interesting metal as it is self-passivating, thus under air it forms spontaneously an oxide layer which protectsthemetalunderneathfromfurthercorrosion. It was John Wilkes who realized that “room-temperature molten salts” would onlyexperienceawidespreadinterestanduptakeiftheywerestableunderenviron- mentalconditions.Wilkes’grouppublisheddetailsofthefirstsuchliquidin1992 – – usingtheBF andthePF anions,thelattershowingamiscibilitygapwithwater. 4 6 Thus these liquids could, in principle, be made water free. (Today we know that – – ionicliquidscontainingBF andPF aresubjecttodecompositioninthepresence 4 6 ofwater.)Electrochemicalstudiesshowedthateventhese“early”ionicliquidshad wideelectrochemicalwindowsofabout4Vwithcathodiclimitsof–2to–2.5V.vs. NHE.Thiscathodiclimitshould,fromthethermodynamicpointofview,bewide enoughtoelectrodepositmanyreactiveelements. Around 1995, Seddon realized that the expression “room-temperature molten salts”wascounter-productive.Theexpression“moltensalt”wasalwaysassociated with“hightemperature”,asalsotheeditors(andmanyauthors)ofthisbookhad ElectrodepositionfromIonicLiquids.EditedbyF.Endres,D.MacFarlane,A.Abbott Copyright(cid:1)C 2008WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:978-3-527-31565-9 fm January11,2008 10:34 CharCount=0 x Preface toexperience.Theintroductionoftheterm“ionicliquids”forlowmeltingmolten saltswithmeltingtemperaturesbelow100◦C(thedefinitionwasactuallycoinedby Waldenin1914)createdacleardistinctionandthenewterm“ionicliquid”began toappearinanunprecedentednumberofpublications.Inthelate1990sthefirst – papersontheelectrodepositionofsilverandcopperinionicliquidsbasedonBF 4 – and PF appeared in the literature. From these early papers it was immediately 6 clear that electrodeposition from ionic liquids is not trivial and is actually more complicatedthanusingionicliquidsbasedonAlCl .Inadditiontoviscosityand 3 conductivityconcerns,impuritiessuchaswater,halidesandorganiccompounds provedtobemajordifficulties. Thus,nearlytwentyyearsofaccumulatedknowledgeonAlCl -basedionicliquids 3 couldonlybetransferredwithdifficultytothisnewclassofionicliquids,because theirLewisacidity/basicitywastotallydifferent.Thus,theelectrochemistryofthese secondgenerationionicliquidshadtobere-invented,moreorless.Nevertheless, progresswasnotslowedandin2002alonetherewerealready600papersdealing with ionic liquids, about 10% concentrating on electrochemical aspects. In the followingyearsmorestableionicliquidswithwiderelectrochemicalwindowswere developed and cathodic decomposition potentials as low as –3 V vs. NHE were reported,openingthedoortotheelectrodepositionofmanyreactiveelementssuch asSi,Ge,Ta,Al. Recentlyanovelclassofdeepeutecticsolventsbasedoncholinechloridehave beendeveloped.Thesecanbehandledeasilyunderenvironmentalconditionsand circumvent many problems that occur in aqueous solutions. They also offer the first economically viable liquids that can be used on an industrial scale. As the interest of electrochemists and classical electroplaters in ionic liquids has risen stronglyinthelastfewyearswedecided,in2006,tocollectthekeyaspectsofthe electrodepositionfromionicliquidsinthepresentbook.Thebookhasbeenwritten by a panel of expert authors during late 2006 and the first half of 2007 and thus describesthestateoftheartasofthatpointintime. InChapter1weexplainthemotivationandbasicconceptsofelectrodeposition fromionicliquids.InChapter2anintroductiontotheprinciplesofionicliquids synthesisisprovidedasbackgroundforthosewhomaybeusingthesematerialsfor thefirsttime.Whilemostoftheionicliquidsdiscussedinthisbookareavailable fromcommercialsourcesitisimportantthatthereaderisawareofthesynthetic methodssothatimpurityissuesareclearlyunderstood.Nonetheless,sinceacom- prehensive summary is beyond the scope of this book the reader is referred for more details to the second edition of Ionic Liquids in Synthesis, edited by Peter WasserscheidandTomWelton.Chapter3summarizesthephysicalpropertiesof ionic liquids, and in Chapter 4 selected electrodeposition results are presented. Chapter4alsohighlightssomeofthetroublesomeaspectsofionicliquiduse.One mightexpectthatwithadecompositionpotentialdownto–3Vvs.NHEallavailable elementscouldbedeposited;unfortunately,thesituationisnotassimpleasthat andthedepositionoftantalumisdiscussedasanexampleoftheissues.InChapters 5 to 7 the electrodeposition of alloys is reviewed, together with the deposition of semiconductorsandconductingpolymers.Thedepositionofconductingpolymers

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.