ShigejiFujitaandAkiraSuzuki ElectricalConductioninGraphene andNanotubes RelatedTitles Jiang,D.-E.,Chen,Z. Saito,Y.(ed.) GrapheneChemistry Carbon Nanotube and Related TheoreticalPerspectives FieldEmitters 2013 FundamentalsandApplications ISBN:978-1-119-94212-2 2010 ISBN:978-3-527-32734-8 Malic,E.,Knorr,A. Grapheneand Carbon Akasaka,T.,Wudl,F.,Nagase,S.(eds.) Nanotubes Chemistryof Nanocarbons UltrafastRelaxationDynamicsand Optics 2010 2013 ISBN:978-0-470-72195-7 ISBN:978-3-527-41161-0 Krüger,A. Monthioux,M. Carbon Materialsand CarbonMeta-Nanotubes Nanotechnology Synthesis,PropertiesandApplications 2010 2011 ISBN:978-3-527-31803-2 ISBN:978-0-470-51282-1 Guldi,D.M.,Martín,N.(eds.) Jorio,A.,Dresselhaus,M.S.,Saito,R., Dresselhaus,G. Carbon Nanotubesand RelatedStructures Raman Spectroscopyin Synthesis,Characterization, GrapheneRelatedSystems Functionalization,andApplications 2011 2010 ISBN:978-3-527-40811-5 ISBN:978-3-527-32406-4 Delhaes,P. Reich,S.,Thomsen,C.,Maultzsch,J. Solidsand Carbonated Carbon Nanotubes Materials BasicConceptsandPhysicalProperties 2010 2004 ISBN:978-1-84821-200-8 ISBN:978-3-527-40386-8 Shigeji Fujita and Akira Suzuki Electrical Conduction in Graphene and Nanotubes TheAuthors AllbookspublishedbyWiley-VCHarecarefully produced.Nevertheless,authors,editors,and Prof.Dr.ShigejiFujita publisherdonotwarranttheinformation UniversityofBuffalo containedinthesebooks,includingthisbook,to SUNY,Dept.ofPhysics befreeoferrors.Readersareadvisedtokeepin 329FronczakHall mindthatstatements,data,illustrations, Buffalo,NY14260 proceduraldetailsorotheritemsmay USA inadvertentlybeinaccurate. LibraryofCongressCardNo.: Prof.Dr.AkiraSuzuki appliedfor TokyoUniversityofScience Dept.ofPhysics BritishLibraryCataloguing-in-PublicationData: Shinjuku-ku Acataloguerecordforthisbookisavailable 162-8601Tokyo fromtheBritishLibrary. Japan Bibliographicinformationpublishedbythe DeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableonthe Internetathttp://dnb.d-nb.de. ©2013WILEY-VCHVerlagGmbH&Co.KGaA, Boschstr.12,69469Weinheim,Germany Allrightsreserved(includingthoseoftranslation intootherlanguages).Nopartofthisbookmay bereproducedinanyform–byphotoprinting, microfilm,oranyothermeans–nortransmitted ortranslatedintoamachinelanguagewithout writtenpermissionfromthepublishers.Regis- terednames,trademarks,etc.usedinthisbook, evenwhennotspecificallymarkedassuch,are nottobeconsideredunprotectedbylaw. PrintISBN 978-3-527-41151-1 ePDFISBN 978-3-527-66552-5 Composition le-texpublishingservicesGmbH, Leipzig PrintingandBinding MarkonoPrintMedia PteLtd,Singapore CoverDesign Adam-Design,Weinheim PrintedinSingapore Printedonacid-freepaper V Contents Preface XI PhysicalConstants,Units,MathematicalSignsandSymbols XV 1 Introduction 1 1.1 CarbonNanotubes 1 1.2 TheoreticalBackground 4 1.2.1 MetalsandConductionElectrons 4 1.2.2 QuantumMechanics 4 1.2.3 HeisenbergUncertaintyPrinciple 4 1.2.4 BosonsandFermions 5 1.2.5 FermiandBoseDistributionFunctions 5 1.2.6 CompositeParticles 6 1.2.7 QuasifreeElectronModel 6 1.2.8 “Electrons”and“Holes” 7 1.2.9 TheGateFieldEffect 7 1.3 BookLayout 8 1.4 SuggestionsforReaders 9 1.4.1 SecondQuantization 9 1.4.2 SemiclassicalTheoryofElectronDynamics 9 1.4.3 FermiSurface 9 References 10 2 KineticTheoryandtheBoltzmannEquation 11 2.1 DiffusionandThermalConduction 11 2.2 CollisionRate:MeanFreePath 12 2.3 ElectricalConductivityandMatthiessen’sRule 15 2.4 TheHallEffect:“Electrons”and“Holes” 17 2.5 TheBoltzmannEquation 19 2.6 TheCurrentRelaxationRate 21 References 25 3 BlochElectronDynamics 27 3.1 BlochTheoreminOneDimension 27 3.2 TheKronig–PenneyModel 30 VI Contents 3.3 BlochTheoreminThreeDimensions 33 3.4 FermiLiquidModel 36 3.5 TheFermiSurface 37 3.6 HeatCapacityandDensityofStates 40 3.7 TheDensityofStateintheMomentumSpace 42 3.8 EquationsofMotionforaBlochElectron 46 References 51 4 PhononsandElectron–PhononInteraction 53 4.1 PhononsandLatticeDynamics 53 4.2 VanHoveSingularities 57 4.2.1 ParticlesonaStretchedString(CoupledHarmonicOscillators) 57 4.2.2 Low-FrequencyPhonons 59 4.2.3 Discussion 61 4.3 Electron–PhononInteraction 65 4.4 Phonon-ExchangeAttraction 71 References 75 5 ElectricalConductivityofMultiwalledNanotubes 77 5.1 Introduction 77 5.2 Graphene 78 5.3 LatticeStabilityandReflectionSymmetry 81 5.4 Single-WallNanotubes 84 5.5 MultiwalledNanotubes 85 5.6 SummaryandDiscussion 87 References 89 6 SemiconductingSWNTs 91 6.1 Introduction 91 6.2 Single-WallNanotubes 93 6.3 SummaryandDiscussion 98 References 98 7 Superconductivity 99 7.1 BasicPropertiesofaSuperconductor 99 7.1.1 ZeroResistance 99 7.1.2 MeissnerEffect 100 7.1.3 RingSupercurrentandFluxQuantization 101 7.1.4 JosephsonEffects 102 7.1.5 EnergyGap 104 7.1.6 SharpPhaseChange 104 7.2 OccurrenceofaSuperconductor 105 7.2.1 ElementalSuperconductors 105 7.2.2 CompoundSuperconductors 106 7.2.3 High-T Superconductors 107 c 7.3 TheoreticalSurvey 107 7.3.1 TheCauseofSuperconductivity 107 Contents VII 7.3.2 TheBardeen–Cooper–SchriefferTheory 108 7.3.3 QuantumStatisticalTheory 110 7.4 QuantumStatisticalTheoryofSuperconductivity 111 7.4.1 TheGeneralizedBCSHamiltonian 111 7.5 TheCooperPairProblem 114 7.6 MovingPairons 116 7.7 TheBCSGroundState 119 7.7.1 TheReducedGeneralizedBCSHamiltonian 119 7.7.2 TheGroundState 121 7.8 Remarks 126 7.8.1 TheNatureoftheReducedHamiltonian 126 7.8.2 BindingEnergyperPairon 127 7.8.3 TheEnergyGap 127 7.8.4 TheEnergyGapEquation 128 7.8.5 NeutralSupercondensate 130 7.8.6 CooperPairs(Pairons) 130 7.8.7 FormationofaSupercondensateandOccurrenceofSuperconductors 130 7.8.8 BlurredFermiSurface 131 7.9 Bose–EinsteinCondensationin2D 133 7.10 Discussion 137 References 139 8 Metallic(orSuperconducting)SWNTs 141 8.1 Introduction 141 8.2 Graphene 147 8.3 TheFullHamiltonian 149 8.4 MovingPairons 151 8.5 TheBose–EinsteinCondensationofPairons 153 8.6 SuperconductivityinMetallicSWNTs 157 8.7 High-FieldTransportinMetallicSWNTs 159 8.8 Zero-BiasAnomaly 161 8.9 TemperatureBehaviorandCurrentSaturation 162 8.10 Summary 162 References 164 9 MagneticSusceptibility 165 9.1 MagnetogyricRatio 165 9.2 PauliParamagnetism 167 9.3 TheLandauStatesandLevels 170 9.4 LandauDiamagnetism 171 References 176 10 MagneticOscillations 177 10.1 Onsager’sFormula 177 10.2 StatisticalMechanicalCalculations:3D 181 10.3 StatisticalMechanicalCalculations:2D 184 VIII Contents 10.4 AnisotropicMagnetoresistanceinCopper 189 10.4.1 Introduction 189 10.4.2 Theory 192 10.4.3 Discussion 194 10.5 Shubnikov–deHaasOscillations 196 References 201 11 QuantumHallEffect 203 11.1 ExperimentalFacts 203 11.2 TheoreticalDevelopments 206 11.3 TheoryoftheQuantumHallEffect 208 11.3.1 Introduction 208 11.3.2 TheModel 210 11.3.3 TheIntegerQHE 212 11.3.4 TheFractionalQHE 217 11.4 Discussion 218 References 219 12 QuantumHallEffectinGraphene 221 12.1 Introduction 221 References 227 13 SeebeckCoefficientinMultiwalledCarbonNanotubes 229 13.1 Introduction 229 13.2 ClassicalTheoryoftheSeebeckCoefficientinaMetal 232 13.3 QuantumTheoryoftheSeebeckCoefficientinaMetal 235 13.4 SimpleApplications 239 13.5 GrapheneandCarbonNanotubes 240 13.6 ConductioninMultiwalledCarbonNanotubes 242 13.7 SeebeckCoefficientinMultiwalledCarbonNanotubes 243 References 246 14 Miscellaneous 247 14.1 Metal–InsulatorTransitioninVanadiumDioxide 247 14.1.1 Introduction 247 14.2 ConductionElectronsinGraphite 249 14.3 CoronetFermiSurfaceinBeryllium 250 14.4 MagneticOscillationsinBismuth 251 References 251 Appendix 253 A.1 SecondQuantization 253 A.1.1 BosonCreationandAnnihilationOperators 253 A.1.2 Observables 256 A.1.3 FermionCreationandAnnihilationOperators 257 A.1.4 HeisenbergEquationofMotion 259 A.2 EigenvalueProblemandEquation-of-MotionMethod 261
Description: