Electric Car Proliferation and Acceptability A Major Qualifying Project Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science By Jason Correia, [email protected] George Pytlik, [email protected] Jacob Sussman, [email protected] Anthony Ward, [email protected] Submitted to Professor Alexander Emanuel March 20, 2016 Project AAE AAU6 Abstract The goal of this project was to predict the effects of electric vehicle proliferation through a typical New England 15kV-class feeder. By means of simulation, it was possible to predict the power flow corresponding to different load demands. The study focused on the higher demand days of the year, and was determined that during the hottest summer days the maximum admissible demand became exceeded above a critical number of electric vehicles. In order to accommodate above this critical point, it was necessary to consider renewable generation, maximum demand power shifting, and inclusion of battery storage. Page | i Project AAE AAU6 Acknowledgements We would like to thank WPI Professor John Orr for providing us with additional access to simulation software. We would also like to thank James Robinson for providing us with sample feeder data. Finally, we would like to give special thanks to our advisor, Professor Alexander Emanuel, without whom this project would not have been possible. Without his encouragement and support, this project would not have turned out as well as it did. Page | ii Project AAE AAU6 Table of Contents Abstract .......................................................................................................................................................... i Acknowledgements ....................................................................................................................................... ii Table of Contents ......................................................................................................................................... iii Table of Figures ............................................................................................................................................ v Table of Tables ........................................................................................................................................... vii 1 Introduction .......................................................................................................................................... 1 1.1 Capstone Project Goals ................................................................................................................. 9 1.2 Project Summary ......................................................................................................................... 10 2 Background ........................................................................................................................................ 11 2.1 Electric versus Gasoline Powered Vehicles ................................................................................ 11 2.2 Electric Vehicle Brands .............................................................................................................. 12 2.3 Electric Vehicle Charging ........................................................................................................... 13 2.3.1 Home Chargers ................................................................................................................... 13 2.3.1.1 Tesla Model S ................................................................................................................. 13 2.3.1.2 Nissan Leaf ..................................................................................................................... 14 2.3.1.3 Chevrolet Volt ................................................................................................................. 14 2.4 Storage of Energy ....................................................................................................................... 14 2.5 Transformer Life ......................................................................................................................... 16 2.5.1 Suggested Transformer Loading ......................................................................................... 21 2.5.2 Transformer Model ............................................................................................................. 22 2.6 Project Loading and Test Area .................................................................................................... 22 2.7 Energy Usage and Growth .......................................................................................................... 27 2.8 Financial Estimates ..................................................................................................................... 27 2.8.1 Battery Storage .................................................................................................................... 27 2.8.2 Annual Costs ....................................................................................................................... 29 3 Methods .............................................................................................................................................. 30 3.1 Tools and Analysis ...................................................................................................................... 30 3.1.1 Seasonal Peaks .................................................................................................................... 30 3.1.2 Peak Demand ...................................................................................................................... 34 3.2 Data Assumptions ....................................................................................................................... 37 3.2.1 Seasonal Peaks .................................................................................................................... 37 3.2.2 Peak Demand ...................................................................................................................... 40 4 Results ................................................................................................................................................ 41 4.1 Logistic Function Analysis ......................................................................................................... 41 4.1.1 Ideal Scenario ...................................................................................................................... 41 Page | iii Project AAE AAU6 4.1.2 Realistic Scenario ................................................................................................................ 44 4.2 PowerWorld Analysis ................................................................................................................. 47 4.2.1 Subscription Max Simulations ............................................................................................ 48 4.2.2 Feeder Max Simulations ..................................................................................................... 53 4.2.3 Lithium-Ion Battery Simulations ........................................................................................ 57 4.2.4 Micro-Grid Battery Simulations ......................................................................................... 60 4.3 Transformer Lifetime Analysis ................................................................................................... 63 4.4 Battery Charging Analysis .......................................................................................................... 69 5 Solutions ............................................................................................................................................. 75 5.1 Solution 1: Fast Proliferation (Feeder Addition) ........................................................................ 75 5.2 Solution 2: Normal Proliferation (Feeder Storage – Battery) ..................................................... 86 5.3 Solution 3: Slow Proliferation (Micro-Grid)............................................................................... 90 5.4 Predicted Costs of Implementation (Solutions 2 and 3) .............................................................. 98 6 Recommendations & Conclusions ................................................................................................... 103 6.1 Solution 1 Conclusion ............................................................................................................... 103 6.2 Recommendations Based on Projected Conditions ................................................................... 103 6.2.1 Solution 2 Recommendations ........................................................................................... 103 6.2.2 Solution 3 Recommendations ........................................................................................... 104 7 References ........................................................................................................................................ 105 8 Appendix .......................................................................................................................................... 111 8.1 Basic Transformer Information ................................................................................................. 111 8.2 IEEE Std. C57.91-1995Supporting Material ............................................................................ 116 8.3 Transformer Specifications ....................................................................................................... 119 8.4 EV Models ................................................................................................................................ 121 8.4.1 Tesla Model S ................................................................................................................... 121 8.4.2 Nissan Leaf ....................................................................................................................... 122 8.4.3 Chevrolet Volt ................................................................................................................... 123 8.4.4 Destination Charging ........................................................................................................ 124 8.4.5 Superchargers .................................................................................................................... 124 8.5 PowerWorld Figure Key ........................................................................................................... 126 8.6 PSPICE Code ............................................................................................................................ 128 8.7 Battery Storage Calculation ...................................................................................................... 129 Page | iv Project AAE AAU6 Table of Figures Figure 1: Proliferation of Vehicles and Households since 1969 [3] ............................................................. 1 Figure 2: Total U.S. Greenhouse Gas Emissions by Economic Sector in 2013 [4] ...................................... 2 Figure 3: Energy Consumption by Source [5] .............................................................................................. 3 Figure 4: U.S. Electricity Use History in Btu [9] .......................................................................................... 5 Figure 5: U.S. Electricity Use History in kWh [10] ...................................................................................... 5 Figure 6: Possible U.S. Electricity Demand Scenarios [11] ......................................................................... 6 Figure 7: History for Gasoline Cost by the Gallon [12] ................................................................................ 7 Figure 8: U.S. Population History and Projection [13] ................................................................................. 8 Figure 9: Tesla Model S Cutaway View [14] ............................................................................................... 8 Figure 10: Vehicle Drive Components [19] ................................................................................................ 11 Figure 11: Single vs. Dual Charging [24] ................................................................................................... 14 Figure 12: Per Unit Life as a Function of Θ [33] ...................................................................................... 18 H Figure 13: Aging Acceleration Factor as a Function of Θ [33] ................................................................ 19 H Figure 14: Summary of Percent Loss of Life Behavior as Function of Hottest Spot Temperature [33] .... 20 Figure 15: Annotated GIS Map of the Sample Feeder ................................................................................ 23 Figure 16: PowerWorld Lumped Load Model ........................................................................................... 24 Figure 17: Power Triangle [34] ................................................................................................................... 25 Figure 18: PowerWorld Model with Annotated Line Names ..................................................................... 26 Figure 19: Estimates of costs of lithium-ion batteries for use in electric vehicles [66] .............................. 28 Figure 20: Peak kWh Days Worksheet (Part 1) .......................................................................................... 31 Figure 21: Peak kWh Days Worksheet (Part 2) .......................................................................................... 31 Figure 22: Peak kWh Days Worksheet (Part 3) .......................................................................................... 32 Figure 23: 24-Hour Electrical Demand ....................................................................................................... 33 Figure 24: Diffusion of Innovations for EVs plus 0.9% Annual Increase in Energy Usage ....................... 36 Figure 25: Logistic Function Curves – Ideal Scenario ................................................................................ 41 Figure 26: Ideal Scenario – Normal Proliferation Curve ............................................................................ 42 Figure 27: Ideal Scenario – Faster Proliferation Curve .............................................................................. 43 Figure 28: Ideal Scenario – Slower Proliferation Curve ............................................................................. 43 Figure 29: Logistic Function Curves – Realistic Scenario .......................................................................... 44 Figure 30: Realistic Scenario – Normal Proliferation Curve ...................................................................... 45 Figure 31: Realistic Scenario – Faster Proliferation Curve ........................................................................ 45 Figure 32: Realistic Scenario – Slower Proliferation Curve ....................................................................... 46 Figure 33: Summer Peak Day – No Proliferation of EVs + No Energy Growth ........................................ 48 Figure 34: Subscription Max at 0% Saturation and 17 years ...................................................................... 49 Figure 35: Subscription Max at 27% Saturation and 0 Years ..................................................................... 50 Figure 36: Subscription Max at 20% Saturation and 4 Years ..................................................................... 51 Figure 37: Subscription Max at 10% Saturation and 10 Years ................................................................... 52 Figure 38: Subscription Max at 14% Saturation and 7.33 Years ................................................................ 53 Figure 39: Feeder Limit at 25% Saturation and 29 Years ........................................................................... 54 Figure 40: Feeder Limit at 69% saturation and 6.94 years ......................................................................... 55 Figure 41: Feeder Limit 45% Saturation and 18.66 Years .......................................................................... 56 Figure 42: Feeder Limit 56% Saturation and 12.86 Years .......................................................................... 57 Figure 43: Subscription Limit with Feeder Storage Solution at 75% Saturation and 34 Years .................. 58 Figure 44: Subscription Limit with Feeder Storage Solution at 100% Saturation and 26 Years ................ 58 Page | v Project AAE AAU6 Figure 45: Feeder Limit with Feeder Storage at 75% Saturation and 42 Years .......................................... 59 Figure 46: Feeder Limit with Feeder Storage at 100% Saturation and 33 Years ........................................ 60 Figure 47: Subscription Limit for Micro-Grid Solution at 75% Saturation and 35 Years .......................... 61 Figure 48: Subscription Limit for Micro-Grid Solution at 100% Saturation and 27 Years ........................ 61 Figure 49: Feeder Limit for Micro-Grid Solution at 75% Saturation and 43 Years ................................... 62 Figure 50: Feeder Limit for Micro-Grid Solution at 100% Saturation and 34 Years ................................. 62 Figure 51: Example Temperature Curves for IEEE Standard ..................................................................... 64 Figure 52: Hottest Spot for the 3 Loads in Table 13 ................................................................................... 65 Figure 53: Simplified Charger Model ......................................................................................................... 69 Figure 54: Current through Rb ................................................................................................................... 70 Figure 55: Single Car Charger from a Feeder Perspective ......................................................................... 71 Figure 56: Fourier Response of One Car Charger from Feeder Perspective .............................................. 72 Figure 57: Battery Charger Model with Harmonics (Losses) ..................................................................... 73 Figure 58: RMS Values for the Current ...................................................................................................... 73 Figure 59: Split Feeder Annotated Map ...................................................................................................... 76 Figure 60: The Original Feeder Split in Two, PowerWorld Sketch............................................................ 77 Figure 61: PowerWorld Model Solution for Fast Proliferation .................................................................. 80 Figure 62: One Transformer, 35% Total Load, 100% Proliferation, 25 Years ........................................... 82 Figure 63: One Transformer, half of 65% Total Load, 100% Proliferation, 25 Years ............................... 82 Figure 64: Solution 1 – Older Feeder S-curve with Feeder Maximum ....................................................... 84 Figure 65: Solution 1 – New Feeder S-curve with Feeder Maximum ........................................................ 85 Figure 66: PowerWorld model – Peak Power Demand with the Feeder Battery Disconnected ................. 87 Figure 67: PowerWorld model – Peak Power Demand with the Feeder Battery Connected ...................... 88 Figure 68: Solution 2 – Feeder Storage ...................................................................................................... 89 Figure 69: All cars charging at peak current draw, battery discharging ..................................................... 91 Figure 70: All cars charging at peak current draw, battery charging .......................................................... 92 Figure 71: One car charging at peak current draw, battery charging .......................................................... 93 Figure 72: One car charging at peak current draw, battery discharging ..................................................... 93 Figure 73: Seven cars charging at 10 A house current draw, battery discharging ...................................... 94 Figure 74: Seven cars charging at 10 A house current draw, battery charging ........................................... 95 Figure 75: Standard American ACSR Sizes and specifications. [68] ......................................................... 96 Figure 76: Solution 3 – Micro-Grid ............................................................................................................ 97 Figure 77: Transformer Basic Operation [44] ........................................................................................... 111 Figure 78: Distribution Transformer Cross-Section [47] .......................................................................... 112 Figure 79: Ideal Transformer Model [48] ................................................................................................. 112 Figure 80: Magnetic Property of Transformers [50] ................................................................................. 113 Figure 81: ONAF Cooling Method [52] ................................................................................................... 114 Figure 82: OFAF Cooling Method [52] .................................................................................................... 115 Figure 83: OFWF Cooling Method [53] ................................................................................................... 115 Figure 84: Transformer Specification 1 .................................................................................................... 119 Figure 85: Transformer Specifications 2 .................................................................................................. 120 Figure 86: Tesla Model S [57] .................................................................................................................. 121 Figure 87: Nissan Leaf [61] ...................................................................................................................... 122 Figure 88: Chevrolet Volt [65].................................................................................................................. 123 Figure 89: Tesla Supercharger vs. Other Chargers [56] ........................................................................... 125 Figure 90: Tesla Supercharger Charging Profile [56] ............................................................................... 125 Page | vi Project AAE AAU6 Table of Tables Table 1: CO2 emissions from U.S. electricity generation by source, 2014 [7] ............................................ 4 Table 2: EV/EV-Hybrid Side-by-Side Comparison .................................................................................... 12 Table 3: Suggested Maximum Temperature Limits for the Four Types of Loading [33]........................... 21 Table 4: Transformer Model Parameters .................................................................................................... 22 Table 5: Power Triangle Equations ............................................................................................................. 25 Table 6: PowerWorld Distribution Line Information ................................................................................. 27 Table 7: ACSR Size Descriptions ............................................................................................................... 27 Table 8: Data Assumptions – Seasonal Peaks ............................................................................................ 37 Table 9: Average American Commute Distance [37] ................................................................................. 38 Table 10: Data Assumptions – Peak Demand ............................................................................................. 40 Table 11: Difference between Ideal and Realistic Scenarios ...................................................................... 47 Table 12: Standard Normal Transformer Life ............................................................................................ 63 Table 13: Transformer Life for 2015 Highest kWh Day ............................................................................ 65 Table 14: Transformer Life Aggregate for the Year 2015 .......................................................................... 66 Table 15: Transformer Life for a Day at Crucial Points ............................................................................. 66 Table 16: IEEE Standard Life Threshold for 1 Day ................................................................................... 67 Table 17: Feeder Subscription Limit Average Life Loss for 1 Year .......................................................... 67 Table 18: Transformer Life for 2022 Peak kWh Day ................................................................................. 67 Table 19: Transformer Life Loss for the Year 2022 ................................................................................... 68 Table 20: Transformer Life for 2025 Peak kWh Day ................................................................................. 68 Table 21: Transformer Life Loss for Averaged Year 2025 ........................................................................ 68 Table 22: Transformer Life Loss for the Year 2025 ................................................................................... 68 Table 23: Modified Feeder Limit Times per Effects of Harmonics ............................................................ 74 Table 24: Split Feeder Line Recommendations .......................................................................................... 78 Table 25: Split Feeder ACSR Information ................................................................................................. 78 Table 26: Split Feeder Buses and Loading ................................................................................................. 79 Table 27: Split Feeder Buses with Capacitive Collection ........................................................................... 79 Table 28: Transformer Life for the New Feeder with One Transformer .................................................... 81 Table 29: Transformer Life for the Original Feeder for Both Transformers .............................................. 81 Table 30: Solution 1 Costs .......................................................................................................................... 83 Table 31: Feeder Storage Solution .............................................................................................................. 87 Table 32: Micro-Grid Storage Solution ...................................................................................................... 90 Table 33: Subscription Max ........................................................................................................................ 98 Table 34: Feeder Max ................................................................................................................................. 99 Table 35: Lithium Ion Feeder Storage Cost Estimation per kWh using Normal Proliferation Rate .......... 99 Table 36: Solution 2 Cost ......................................................................................................................... 100 Table 37: Micro-Grid Lithium Ion Storage Cost Estimation per kWh using Slow Proliferation Rate ..... 101 Table 38: Temperature Variable Definitions [33] ..................................................................................... 116 Table 39: Temperature Calculation Equations [33] .................................................................................. 117 Table 40: PowerWorld Map Key .............................................................................................................. 127 Page | vii 1 Introduction The United States and its’ citizens have a long history with personal automobile use and ownership, particularly since 1908 when Henry Ford created the affordable Model T [1]. Ever since the advent of affordable automobiles, the United States has developed one of the largest automobile markets in the world [2]. Figure 1 below shows the personal vehicle growth trend compared to the growth in household drivers in the United States, showing that the number of personal vehicles has surpassed both the number of households and drivers since 1969 [3]. Figure 1: Proliferation of Vehicles and Households since 1969 [3] The vast majority of the vehicles in the United States use petroleum products to fuel and lubricate their engines, which contribute to greenhouse emissions that can contribute to global warming and other environmental issues [4]. Figure 2 below shows a distribution of total greenhouse gas emissions in the United States in 2013.It can be seen that transportation accounts for 27% of greenhouse gas emissions, only second to generation emissions of electricity. The types of transportation that account for Figure 2 Project AAE AAU6 include cars, trucks, trains, planes, and ships, and is estimated that more than 90% of the fuel used to power these vehicles comes from petroleum in the form of either gasoline or diesel [4]. Figure 2: Total U.S. Greenhouse Gas Emissions by Economic Sector in 2013 [4] Figure 2 also shows the percentage of greenhouse emissions gases from electrical energy generation to be the largest contributor to total greenhouse gas emissions. It is estimated that of the 31% share of greenhouse gas emissions that electrical energy generation produces, over two-thirds of the emissions is due to the burning of coal, natural gas, and other fossil fuels [4]. Figure 3 below shows energy consumption with the major forms of energy sources being used on the left and the generalized sectors that utilize the energy on the right [5]. As shown in the figure, a staggering majority of about 80% of primary energy consumption comes from a fossil fuel source, while renewable energy sources and nuclear energy fill most of the remaining 20% of other sources. Considering renewable and nuclear sources do not produce greenhouse gases, it can only be concluded that using fossil fuels in energy generation is more affordable for the consumer or more economically abundant; but how many more years will fossil fuels be a reliable energy source? When should a transition to renewable energy sources begin to decrease the United States’ 80% dependence on fossil fuels for energy sources? Page | 2
Description: