ebook img

Elasticity with Mathematica: An introduction to continuum mechanics and linear elasticity PDF

267 Pages·2007·2.538 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elasticity with Mathematica: An introduction to continuum mechanics and linear elasticity

PAB CUFX161-Constantinescu August13,2007 17:14 This page intentionally left blank PAB CUFX161-Constantinescu August13,2007 17:14 Elasticity with MATHEMATICA(cid:1)R Thisbookgivesanintroductiontothekeyideasandprinciplesinthetheoryofelas- ticity with the help of symbolic computation. Differential and integral operators on vector and tensor fields of displacements, strains, and stresses are considered on a consistent and rigorous basis with respect to curvilinear orthogonal coordi- nate systems. As a consequence, vector and tensor objects can be manipulated readily, and fundamental concepts can be illustrated and problems solved with ease.Themethodisillustratedusingavarietyofplaneandthree-dimensionalelas- ticproblems.Generaltheorems,fundamentalsolutions,displacements,andstress potentials are presented and discussed. The Rayleigh-Ritz method for obtaining approximatesolutionsisintroducedforelastostaticandspectralanalysisproblems. Thebookcontainsmorethan60exercisesandsolutionsintheformofMathemat- icanotebooksthataccompanyeverychapter.Oncethereaderlearnsandmasters thetechniques,theycanbeappliedtoalargerangeofpracticalandfundamental problems. AndreiConstantinescuiscurrentlyDirecteurdeRechercheatCNRS:theFrench National Center for Scientific Research in the Laboratoire de Mecanique des Solides,andAssociatedProfessoratE´colePolytechnique,Palaiseau,nearParis.He teachescoursesoncontinuummechanics,elasticity,fatigue,andinverseproblems atengineeringschoolsfromtheParisTechConsortium.Hisresearchisinapplied mechanicsandcoversareasrangingfrominverseproblemsandtheidentification ofdefectsandconstitutivelawstofatigueandlifetimepredictionofstructures.The results have applied through collaboration and consulting for companies such as thecarmanufacturerPeugeot-Citroen,energyprovidersE´lectricite´ deFranceand GazdeFrance,andtheaeroenginemanufacturerMTU. AlexanderKorsunskyiscurrentlyProfessorintheDepartmentofEngineeringSci- ence,UniversityofOxford.HeisalsoaFellowandDeanatTrinityCollege,Oxford. HeteachescoursesinEnglandandFranceonengineeringalloys,fracturemechan- ics,appliedelasticity,advancedstressanalysis,andresidualstresses.Hisresearch interestsareinthefieldofexperimentalcharacterizationandtheoreticalanalysis ofdeformationandfractureofmetals,polymers,andconcrete,withemphasison thermo-mechanical fatigue and damage. He is particularly interested in residual stresseffectsandtheirmeasurementbyadvanceddiffractiontechniquesusingneu- tronsandhigh-energyX-raysatsynchrotronsourcesandinthelaboratory.Heisa memberoftheScienceAdvisoryCommitteeoftheEuropeanSynchrotronRadi- ationFacilityinGrenoble,andheleadsthedevelopmentofthenewengineering instrument(JEEP)atDiamondLightSourcenearOxford. i PAB CUFX161-Constantinescu August13,2007 17:14 ii PAB CUFX161-Constantinescu August13,2007 17:14 Elasticity with M (cid:1) ATHEMATICA R AN INTRODUCTION TO CONTINUUM MECHANICS AND LINEAR ELASTICITY Andrei Constantinescu CNRSandEcolePolytechnique Alexander Korsunsky TrinityCollege,UniversityofOxford iii CAMBRIDGEUNIVERSITYPRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB28RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521842013 © Andrei Constantinescu and Alexander Korsunsky 2007 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2007 ISBN-13 978-0-511-35463-2 eBook (EBL) ISBN-10 0-511-35463-0 eBook (EBL) ISBN-13 978-0-521-84201-3 hardback ISBN-10 0-521-84201-8 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. PAB CUFX161-Constantinescu August13,2007 17:14 Contents Acknowledgments pageix Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1 Motivation 1 Whatwillandwillnotbefoundinthisbook 4 1 Kinematics:displacementsandstrains . . . . . . . . . . . . . . 8 outline 8 1.1. Particlemotion:trajectoriesandstreamlines 8 1.2. Strain 19 1.3. Smallstraintensor 28 1.4. Compatibilityequationsandintegrationofsmallstrains 29 summary 35 exercises 35 2 Dynamicsandstatics:stressesandequilibrium . . . . . . . . . . 41 outline 41 2.1. Forcesandmomenta 41 2.2. Virtualpowerandtheconceptofstress 42 2.3. ThestresstensoraccordingtoCauchy 46 2.4. Potentialrepresentationsofself-equilibratedstresstensors 48 summary 50 exercises 50 3 Linearelasticity . . . . . . . . . . . . . . . . . . . . . . . 56 outline 56 3.1. Linearelasticity 56 3.2. Matrixrepresentationofelasticcoefficients 58 3.3. Materialsymmetry 65 3.4. Theextensionexperiment 72 3.5. Furtherpropertiesofisotropicelasticity 75 3.6. Limitsoflinearelasticity 78 summary 80 exercises 80 v PAB CUFX161-Constantinescu August13,2007 17:14 vi Contents 4 Generalprinciplesinproblemsofelasticity . . . . . . . . . . . 86 outline 86 4.1. Thecompleteelasticityproblem 86 4.2. Displacementformulation 88 4.3. Stressformulation 89 4.4. Example:sphericalshellunderpressure 91 4.5. Superpositionprinciple 94 4.6. Quasistaticdeformationandthevirtualworktheorem 95 4.7. Uniquenessofsolution 95 4.8. Energypotentials 96 4.9. Reciprocitytheorems 99 4.10. TheSaintVenantprinciple 101 summary 109 exercises 109 5 Stressfunctions . . . . . . . . . . . . . . . . . . . . . . . 116 outline 116 5.1. Planestress 116 5.2. AirystressfunctionoftheformA (x,y) 119 0 5.3. Airystressfunctionwithacorrectiveterm:A (x,y)−z2A (x,y) 122 0 1 5.4. Planestrain 124 5.5. AirystressfunctionoftheformA (γ,θ) 126 0 5.6. Biharmonicfunctions 126 5.7. Thedisclination,dislocations,andassociatedsolutions 130 5.8. Awedgeloadedbyaconcentratedforceappliedattheapex 133 5.9. TheKelvinproblem 137 5.10. TheWilliamseigenfunctionanalysis 139 5.11. TheKirschproblem:stressconcentrationaroundacircularhole 145 5.12. The Inglis problem: stress concentration around an elliptical hole 147 summary 152 exercises 152 6 Displacementpotentials . . . . . . . . . . . . . . . . . . . . 157 outline 157 6.1. Papkovich–Neuberpotentials 158 6.2. Galerkinvector 182 6.3. Lovestrainfunction 183 summary 186 exercises 187 7 Energyprinciplesandvariationalformulations . . . . . . . . . . 189 outline 189 7.1. Strainenergyandcomplementaryenergy 189 7.2. Extremumtheorems 192 vi PAB CUFX161-Constantinescu August13,2007 17:14 Contents vii 7.3. Approximatesolutionsforproblemsofelasticity 196 7.4. TheRayleigh–Ritzmethod 197 7.5. Extremalpropertiesoffreevibrations 204 summary 212 exercises 212 Appendix1.Differentialoperators 219 (cid:1) Appendix2.MathematicaR tricks 235 Appendix3.Plottingparametricmeshes 243 Bibliography 249 Index 251 vii PAB CUFX161-Constantinescu August13,2007 17:14 viii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.